Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Performance analysis of a novel IT2 FCM algorithm

Full metadata record
DC Field Value Language
dc.contributor.authorHuddedar, Shashank Anil-
dc.contributor.authorKagliwal, Mayank-
dc.contributor.authorSinghal, Badrinath-
dc.contributor.authorRhee, Frank chung hoon-
dc.date.accessioned2021-06-22T13:02:15Z-
dc.date.available2021-06-22T13:02:15Z-
dc.date.issued2018-07-
dc.identifier.issn1098-7584-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/7899-
dc.description.abstractIn this paper, we propose a novel interval type-2 (IT2) fuzzy clustering algorithm by incorporating a speed up type reduction algorithm. In order to illustrate our proposed method, embedded lines and planes that are associated with the IT2 fuzzy membership functions (MFs) are confined to 2-dimensional (2-D) space for visualization purposes. The original IT2 fuzzy C-means (FCM) algorithm uses the Karnik-Mendel (KM) algorithm as a part of its type reduction procedure where computation of the centroid is achieved by iterating each dimension of the pattern sets separately. This ignores the possible correlation among the multiple dimensions and can result in high computational complexity. Our proposed algorithm considers multidimensional pattern sets jointly and estimates the centroid at comparable costs. Finally, experiments are performed on several pattern sets to show the validity of our proposed method. © 2018 IEEE.-
dc.format.extent7-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titlePerformance analysis of a novel IT2 FCM algorithm-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/FUZZ-IEEE.2018.8491457-
dc.identifier.scopusid2-s2.0-85060440253-
dc.identifier.wosid000451248900019-
dc.identifier.bibliographicCitationIEEE International Conference on Fuzzy Systems, v.2018-July, pp 1 - 7-
dc.citation.titleIEEE International Conference on Fuzzy Systems-
dc.citation.volume2018-July-
dc.citation.startPage1-
dc.citation.endPage7-
dc.type.docTypeConference Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusFuzzy clustering-
dc.subject.keywordPlusFuzzy systems-
dc.subject.keywordPlusMembership functions-
dc.subject.keywordPlusFCM algorithm-
dc.subject.keywordPlusFuzzy C-means algorithms-
dc.subject.keywordPlusFuzzy membership function-
dc.subject.keywordPlusMultiple dimensions-
dc.subject.keywordPlusPattern set-
dc.subject.keywordPlusPerformance analysis-
dc.subject.keywordPlusSpeed up-
dc.subject.keywordPlusType reduction-
dc.subject.keywordPlusClustering algorithms-
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8491457/-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Rhee, Chung Hoon Frank photo

Rhee, Chung Hoon Frank
ERICA 공학대학 (SCHOOL OF ELECTRICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE