High-performance organic circuits based on precisely aligned single-crystal arrays
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kang, Jingu | - |
dc.contributor.author | Lee, Minwook | - |
dc.contributor.author | Facchetti, Antonio | - |
dc.contributor.author | Kim, Jaekyun | - |
dc.contributor.author | Park, Sung Kyu | - |
dc.date.accessioned | 2021-06-22T13:04:19Z | - |
dc.date.available | 2021-06-22T13:04:19Z | - |
dc.date.issued | 2018-05 | - |
dc.identifier.issn | 2046-2069 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/8030 | - |
dc.description.abstract | In this paper, we demonstrate high-performance organic logic circuits based on precisely controlled organic single-crystal arrays. Well-aligned microrod shaped 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene (C8-BTBT) single-crystal organic thin-film-transistors (OTFTs) were fabricated via solvent mediated molecular tailoring with a polymeric sacrificial layer, exhibiting saturation mobility of >2 cm(2) V-1 s(-1). Using this approach, precise placement of organic crystal arrays in a controlled orientation was successfully achieved, enabling the fabrication of OTFT-based inverter circuits with a gain of 1.37 (V V-1). Furthermore, it was demonstrated that, by varying the number of single-crystal microrods, the device dimension and corresponding circuit performance can be modulated. A high-performance inverter operation with various interdigitating single-crystal microrod arrays can thus be achieved. | - |
dc.format.extent | 4 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | High-performance organic circuits based on precisely aligned single-crystal arrays | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1039/c8ra02139b | - |
dc.identifier.scopusid | 2-s2.0-85047398850 | - |
dc.identifier.wosid | 000435822200044 | - |
dc.identifier.bibliographicCitation | RSC Advances, v.8, no.31, pp 17417 - 17420 | - |
dc.citation.title | RSC Advances | - |
dc.citation.volume | 8 | - |
dc.citation.number | 31 | - |
dc.citation.startPage | 17417 | - |
dc.citation.endPage | 17420 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.subject.keywordPlus | FIELD-EFFECT TRANSISTORS | - |
dc.subject.keywordPlus | SEMICONDUCTORS | - |
dc.subject.keywordPlus | FABRICATION | - |
dc.subject.keywordPlus | TRANSPORT | - |
dc.identifier.url | https://pubs.rsc.org/en/content/articlelanding/2018/RA/C8RA02139B | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.