Elastic Routing in Ad Hoc Networks with Directional Antennas
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yoon, Jangho | - |
dc.contributor.author | Shin, Won-Yong | - |
dc.contributor.author | Jeon, Sang-Woon | - |
dc.date.accessioned | 2021-06-22T13:21:29Z | - |
dc.date.available | 2021-06-22T13:21:29Z | - |
dc.date.issued | 2017-12 | - |
dc.identifier.issn | 1536-1233 | - |
dc.identifier.issn | 1558-0660 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/8399 | - |
dc.description.abstract | Throughput scaling laws of an ad hoc network equipping directional antennas at each node are analyzed. More specifically, this paper considers a general framework in which the beam width of each node can scale at an arbitrary rate relative to the number of nodes. We introduce an elastic routing protocol, which enables to increase per-hop distance elastically according to the beam width, while maintaining an average signal-to-interference-and-noise ratio at each receiver as a constant. We then identify fundamental operating regimes characterized according to the beam width scaling and analyze throughput scaling laws for each of the regimes. The elastic routing is shown to achieve a much better throughput scaling law than that of the conventional nearest-neighbor multihop for all operating regimes. The gain comes from the fact that more source-destination pairs can be simultaneously activated as the beam width becomes narrower, which eventually leads to a linear throughput scaling law. In addition, our framework is applied to a hybrid network consisting of both wireless ad hoc nodes and infrastructure nodes. As a result, in the hybrid network, we analyze a further improved throughput scaling law and identify the operating regime where the use of directional antennas is beneficial. In addition, we perform numerical evaluation in both ad hoc and hybrid networks, which completely validates our analytical results. | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | IEEE COMPUTER SOC | - |
dc.title | Elastic Routing in Ad Hoc Networks with Directional Antennas | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1109/TMC.2017.2695603 | - |
dc.identifier.scopusid | 2-s2.0-85038209032 | - |
dc.identifier.wosid | 000414422200005 | - |
dc.identifier.bibliographicCitation | IEEE TRANSACTIONS ON MOBILE COMPUTING, v.16, no.12, pp 3334 - 3346 | - |
dc.citation.title | IEEE TRANSACTIONS ON MOBILE COMPUTING | - |
dc.citation.volume | 16 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 3334 | - |
dc.citation.endPage | 3346 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.subject.keywordPlus | WIRELESS NETWORKS | - |
dc.subject.keywordPlus | TRANSPORT CAPACITY | - |
dc.subject.keywordPlus | INFRASTRUCTURE | - |
dc.subject.keywordPlus | COMMUNICATION | - |
dc.subject.keywordAuthor | Ad hoc network | - |
dc.subject.keywordAuthor | beam width | - |
dc.subject.keywordAuthor | directional antenna | - |
dc.subject.keywordAuthor | elastic routing | - |
dc.subject.keywordAuthor | hybrid network | - |
dc.subject.keywordAuthor | multihop routing | - |
dc.subject.keywordAuthor | throughput scaling law | - |
dc.identifier.url | https://ieeexplore.ieee.org/document/7904719?arnumber=7904719&SID=EBSCO:edseee | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.