Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid

Full metadata record
DC Field Value Language
dc.contributor.authorLu, R.-
dc.contributor.authorHong, S.H.-
dc.contributor.authorZhang, X.-
dc.contributor.authorYe, X.-
dc.contributor.authorSong, W.S.-
dc.date.accessioned2021-06-22T13:21:49Z-
dc.date.available2021-06-22T13:21:49Z-
dc.date.created2021-01-22-
dc.date.issued2017-12-
dc.identifier.issn0000-0000-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/8421-
dc.description.abstractThis paper proposes a price-based demand response (DR) algorithm for energy management in a hierarchical electricity market. The pricing problem is formulated as a reinforcement learning (RL) model. Using RL, the service provider (SP) can adaptively decide the retail electricity price during the on-line learning process. © 2017 IEEE.-
dc.language영어-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleA Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, S.H.-
dc.identifier.doi10.1109/CSCI.2017.327-
dc.identifier.scopusid2-s2.0-85060565092-
dc.identifier.bibliographicCitationProceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017, pp.1822 - 1823-
dc.relation.isPartOfProceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017-
dc.citation.titleProceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017-
dc.citation.startPage1822-
dc.citation.endPage1823-
dc.type.rimsART-
dc.type.docTypeConference Paper-
dc.description.journalClass1-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusElectric power transmission networks-
dc.subject.keywordPlusMachine learning-
dc.subject.keywordPlusSmart power grids-
dc.subject.keywordPlusDemand response-
dc.subject.keywordPlusElectricity prices-
dc.subject.keywordPlusHierarchical electricity market-
dc.subject.keywordPlusOnline learning-
dc.subject.keywordPlusPricing problems-
dc.subject.keywordPlusReinforcement learning models-
dc.subject.keywordPlusService provider-
dc.subject.keywordPlusSmart grid-
dc.subject.keywordPlusReinforcement learning-
dc.subject.keywordAuthorDemand response-
dc.subject.keywordAuthorreinforcement learning-
dc.subject.keywordAuthorsmart grid-
Files in This Item
There are no files associated with this item.
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > SCHOOL OF ELECTRICAL ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE