A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lu, R. | - |
dc.contributor.author | Hong, S.H. | - |
dc.contributor.author | Zhang, X. | - |
dc.contributor.author | Ye, X. | - |
dc.contributor.author | Song, W.S. | - |
dc.date.accessioned | 2021-06-22T13:21:49Z | - |
dc.date.available | 2021-06-22T13:21:49Z | - |
dc.date.created | 2021-01-22 | - |
dc.date.issued | 2017-12 | - |
dc.identifier.issn | 0000-0000 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/8421 | - |
dc.description.abstract | This paper proposes a price-based demand response (DR) algorithm for energy management in a hierarchical electricity market. The pricing problem is formulated as a reinforcement learning (RL) model. Using RL, the service provider (SP) can adaptively decide the retail electricity price during the on-line learning process. © 2017 IEEE. | - |
dc.language | 영어 | - |
dc.language.iso | en | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | A Perspective on Reinforcement Learning in Price-Based Demand Response for Smart Grid | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Hong, S.H. | - |
dc.identifier.doi | 10.1109/CSCI.2017.327 | - |
dc.identifier.scopusid | 2-s2.0-85060565092 | - |
dc.identifier.bibliographicCitation | Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017, pp.1822 - 1823 | - |
dc.relation.isPartOf | Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017 | - |
dc.citation.title | Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017 | - |
dc.citation.startPage | 1822 | - |
dc.citation.endPage | 1823 | - |
dc.type.rims | ART | - |
dc.type.docType | Conference Paper | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Electric power transmission networks | - |
dc.subject.keywordPlus | Machine learning | - |
dc.subject.keywordPlus | Smart power grids | - |
dc.subject.keywordPlus | Demand response | - |
dc.subject.keywordPlus | Electricity prices | - |
dc.subject.keywordPlus | Hierarchical electricity market | - |
dc.subject.keywordPlus | Online learning | - |
dc.subject.keywordPlus | Pricing problems | - |
dc.subject.keywordPlus | Reinforcement learning models | - |
dc.subject.keywordPlus | Service provider | - |
dc.subject.keywordPlus | Smart grid | - |
dc.subject.keywordPlus | Reinforcement learning | - |
dc.subject.keywordAuthor | Demand response | - |
dc.subject.keywordAuthor | reinforcement learning | - |
dc.subject.keywordAuthor | smart grid | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.