Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Jeong Hoon-
dc.contributor.authorKim, In Soo-
dc.contributor.authorLee, Cheol Hee-
dc.contributor.authorMoon, Young Shik-
dc.date.accessioned2021-06-22T05:59:35Z-
dc.date.available2021-06-22T05:59:35Z-
dc.date.issued2020-09-
dc.identifier.issn1976-7277-
dc.identifier.issn1976-7277-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/860-
dc.description.abstractThe inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.-
dc.format.extent26-
dc.language영어-
dc.language.isoENG-
dc.publisher한국인터넷정보학회-
dc.titleCrack Detection Method for Tunnel Lining Surfaces using Ternary Classifier-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.3837/tiis.2020.09.013-
dc.identifier.scopusid2-s2.0-85092276110-
dc.identifier.wosid000577444700013-
dc.identifier.bibliographicCitationKSII Transactions on Internet and Information Systems, v.14, no.9, pp 3797 - 3822-
dc.citation.titleKSII Transactions on Internet and Information Systems-
dc.citation.volume14-
dc.citation.number9-
dc.citation.startPage3797-
dc.citation.endPage3822-
dc.type.docTypeArticle-
dc.identifier.kciidART002633883-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusSEGMENTATION-
dc.subject.keywordAuthorCrack Detection-
dc.subject.keywordAuthorConvolutional Neural Network-
dc.subject.keywordAuthorTunnel Lining Inspection-
dc.identifier.urlhttp://itiis.org/digital-library/23862-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF COMPUTING > SCHOOL OF COMPUTER SCIENCE > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE