Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 기법에 관한 기초적 연구
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이한승 | - |
dc.contributor.author | 이승준 | - |
dc.contributor.author | 양현민 | - |
dc.date.accessioned | 2021-06-22T13:42:29Z | - |
dc.date.available | 2021-06-22T13:42:29Z | - |
dc.date.issued | 2017-09 | - |
dc.identifier.uri | https://scholarworks.bwise.kr/erica/handle/2021.sw.erica/8997 | - |
dc.description.abstract | The conventional method for estimating compressive strength of concrete has been suggested by considering only 1 to 3 influential factors. In this study, seven influential mixture factors (Water-Cement Ratio, Water, Cement, Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at three conferences in order to know tendency of data. The purpose of this paper is to estimate compressive strength more accurately by applying it to algorithm of the Deep learning. | - |
dc.format.extent | 2 | - |
dc.language | 한국어 | - |
dc.language.iso | KOR | - |
dc.publisher | 한국구조물진단유지관리공학회 | - |
dc.title | Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 기법에 관한 기초적 연구 | - |
dc.title.alternative | A Basic Study on Estimation Method of Concrete Compressive Strength Based on Deep Learning Algorithm | - |
dc.type | Article | - |
dc.publisher.location | 대한민국 | - |
dc.identifier.bibliographicCitation | 한국구조물진단유지관리공학회 2017년 가을 학술발표회 논문집, v.21, no.2, pp 279 - 280 | - |
dc.citation.title | 한국구조물진단유지관리공학회 2017년 가을 학술발표회 논문집 | - |
dc.citation.volume | 21 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 279 | - |
dc.citation.endPage | 280 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | other | - |
dc.identifier.url | http://db.koreascholar.com/Article?code=334073 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
55 Hanyangdeahak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Korea+82-31-400-4269 sweetbrain@hanyang.ac.kr
COPYRIGHT © 2021 HANYANG UNIVERSITY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.