Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

In vitro molecular machine learning algorithm via symmetric internal loops of DNA

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Ji-Hoon-
dc.contributor.authorLee, Seung Hwan-
dc.contributor.authorBaek, Christina-
dc.contributor.authorChun, Hyosun-
dc.contributor.authorRyu, Je-Hwan-
dc.contributor.authorKim, Jin-Woo-
dc.contributor.authorDeaton, Russell-
dc.contributor.authorZhang, Byoung-Tak-
dc.date.accessioned2021-06-22T13:44:26Z-
dc.date.available2021-06-22T13:44:26Z-
dc.date.created2021-01-21-
dc.date.issued2017-08-
dc.identifier.issn0303-2647-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/9113-
dc.description.abstractProgrammable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. (C) 2017 Published by Elsevier Ireland Ltd.-
dc.language영어-
dc.language.isoen-
dc.publisherElsevier BV-
dc.titleIn vitro molecular machine learning algorithm via symmetric internal loops of DNA-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Seung Hwan-
dc.identifier.doi10.1016/j.biosystems.2017.04.005-
dc.identifier.scopusid2-s2.0-85019888478-
dc.identifier.wosid000405155700001-
dc.identifier.bibliographicCitationBioSystems, v.158, pp.1 - 9-
dc.relation.isPartOfBioSystems-
dc.citation.titleBioSystems-
dc.citation.volume158-
dc.citation.startPage1-
dc.citation.endPage9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaLife Sciences & Biomedicine - Other Topics-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryBiology-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.subject.keywordPlusCOMPUTATION-
dc.subject.keywordPlusHYPERNETWORKS-
dc.subject.keywordAuthorBiomolecular computation-
dc.subject.keywordAuthorHypernetwork-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorClassification-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0303264717300357?via%3Dihub-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF ENGINEERING SCIENCES > DEPARTMENT OF BIONANO ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, SEUNG HWAN photo

LEE, SEUNG HWAN
ERICA 공학대학 (DEPARTMENT OF BIONANO ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE