Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Complementary Hybrid Semiconducting Superlattices with Multiple Channels and Mutual Stabilization

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jongchan-
dc.contributor.authorHuong, Chu Thi Thu-
dc.contributor.authorVan Long, Nguyen-
dc.contributor.authorYoon, Minho-
dc.contributor.authorKim, Min Jae-
dc.contributor.authorJeong, Jae Kyeong-
dc.contributor.authorChoi, Sungju-
dc.contributor.authorKim, Dae Hwan-
dc.contributor.authorLee, Chi Ho-
dc.contributor.authorLee, Sang Uck-
dc.contributor.authorSung, Myung Mo-
dc.date.accessioned2021-06-22T06:01:15Z-
dc.date.available2021-06-22T06:01:15Z-
dc.date.issued2020-07-
dc.identifier.issn1530-6984-
dc.identifier.issn1530-6992-
dc.identifier.urihttps://scholarworks.bwise.kr/erica/handle/2021.sw.erica/998-
dc.description.abstractAn organic-inorganic hybrid superlattice with near perfect synergistic integration of organic and inorganic constituents was developed to produce properties vastly superior to those of either moiety alone. The complementary hybrid superlattice is composed of multiple quantum wells of 4-mercaptophenol organic monolayers and amorphous ZnO nanolayers. Within the superlattice, multichannel formation was demonstrated at the organic-inorganic interfaces to produce an excellent-performance field effect transistor exhibiting outstanding field-effect mobility with band-like transport and steep subthreshold swing. Furthermore, mutual stabilizations between organic monolayers and ZnO effectively reduced the performance degradation notorious in exclusively organic and ZnO transistors.-
dc.description.abstractThis work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-TA1703-12.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Chemical Society-
dc.titleComplementary Hybrid Semiconducting Superlattices with Multiple Channels and Mutual Stabilization-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acs.nanolett.0c00859-
dc.identifier.scopusid2-s2.0-85087835646-
dc.identifier.wosid000548893200023-
dc.identifier.bibliographicCitationNano Letters, v.20, no.7, pp 4864 - 4871-
dc.citation.titleNano Letters-
dc.citation.volume20-
dc.citation.number7-
dc.citation.startPage4864-
dc.citation.endPage4871-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordAuthorhybrid superlattices-
dc.subject.keywordAuthorcomplementary-
dc.subject.keywordAuthormultiple channels-
dc.subject.keywordAuthormutual stabilization-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c00859-
Files in This Item
Go to Link
Appears in
Collections
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY > DEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE