Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Scratch to sensitize: scratch-induced sensitivity enhancement in semiconductor thin-film sensors

Authors
Lee, GeonheeChoi, MinChae, Soo SangJeong, Du WonChoi, Won JinJi, SeulgiKim, Yun HoChoi, Ji WoonLee, Tae IlCho, IncheolPark, InkyuLee, Sun SookPark, SungsuPark, NoejungChang, HyunjuLee, Jeong-O
Issue Date
28-Aug-2019
Publisher
ROYAL SOC CHEMISTRY
Citation
NANOSCALE, v.11, no.32, pp.15374 - 15381
Journal Title
NANOSCALE
Volume
11
Number
32
Start Page
15374
End Page
15381
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/1092
DOI
10.1039/c9nr03984h
ISSN
2040-3364
Abstract
Semiconductor gas sensors are advantageous in miniaturization and can be used in a wide range of applications, yet consume large power due to high operating temperature. Here we demonstrated the ability of nanoscale scratches produced with mechanical abrasion to enhance the chemical sensitivity of thin-film-type semiconductor sensors. Well-aligned arrays of scratches parallel to the electrical current direction between the source and drain electrodes were made, using typical polishing machines with diamond suspensions, on semiconductor thin films produced with various deposition methods such as atomic layer deposition (ALD), sputtering, and the sol-gel technique. Processing with sharp diamond microparticles left nano-grooves on the surface, together with changes in chemical composition. For all of the tested metal oxide thin films, the introduction of scratches yielded increased quantities of oxygen vacancies and metallic components. Scratched ZnO devices exhibited superior performance even at room temperature, as predicted by a computational simulation that showed increased binding energy of gas molecules on defects. The scratch technique shown in the present study may be used to produce dense arrays of nanometer-scale, chemically functionalized line patterns on substrates larger than a few tens of centimeters with minimum cost, which in turn may be used in a variety of applications including massive arrays of sensors displaying high sensitivity.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 신소재공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Il photo

Lee, Tae Il
Engineering (Department of Materials Science & Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE