Detailed Information

Cited 12 time in webofscience Cited 13 time in scopus
Metadata Downloads

Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor

Authors
Das, GautamThao Quynh Ngan TranYoon, Hyon Hee
Issue Date
2015
Publisher
DOVE MEDICAL PRESS LTD
Keywords
copper oxide; multiwalled carbon nanotubes; glucose sensor; cyclic voltammetry
Citation
INTERNATIONAL JOURNAL OF NANOMEDICINE, v.10, pp.165 - +
Journal Title
INTERNATIONAL JOURNAL OF NANOMEDICINE
Volume
10
Start Page
165
End Page
+
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/11971
DOI
10.2147/IJN.S88317
ISSN
1178-2013
Abstract
In this work, three different spherulitic nanostructures Cu-CuOA, Cu-CuOB, and Cu-CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu-CuO nanostructures were investigated by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT)-modified indium tin oxide (ITO) electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu-CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu-CuOA, Cu-CuOB, and Cu-CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 mu A mM(-1).cm(-2), respectively. Moreover, the linear range is dependent on the structure types: 0.023-0.29 mM, 0.07-0.8 mM, and 0.023-0.34 mM for Cu-CuOA, Cu-CuOB, and Cu-CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 mu M were observed for Cu-CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, l-ascorbic acid, and creatinine. The high performance of the Cu-CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu-CuOB electrode applied to real urine and serum sample showed satisfactory performance.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화공생명공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE