Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Tissue Regeneration in the Pores of Poly(lactide-co-glycolide)-Impregnated Wall of Expanded Polytetrafluoroethylene (ePTFE) Hybrid Grafts

Authors
Choi, Yoon JeongSon, Ho SungSon, Kuk HuiPark, YongdooFang, Y.Noh, Insup
Issue Date
Aug-2014
Publisher
KOREAN TISSUE ENGINEERING REGENERATIVE MEDICINE SOC
Keywords
Hybrid scaffold; ePTFE; Vascular graft; TEM
Citation
TISSUE ENGINEERING AND REGENERATIVE MEDICINE, v.11, no.4, pp.323 - 332
Journal Title
TISSUE ENGINEERING AND REGENERATIVE MEDICINE
Volume
11
Number
4
Start Page
323
End Page
332
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/12400
DOI
10.1007/s13770-014-0006-y
ISSN
1738-2696
Abstract
Understanding of relationship between pore properties and tissue regeneration of expanded polytetrafluoroethylene (ePTFE) is important in design of vascular tissue engineering. Tissue regeneration into a micron scale pore of the ePTFE wall was investigated by employing techniques of superficial surface modification of ePTFE, fabrication of the hybrid scaffold composed of biodegradable poly (lactide-co-glycolide) (PLGA) and ePTFE, and seeding of vascular cells on its lumen surface. The ePTFE was in advance transformed into a hybrid scaffold by sequential four steps of treatments such as chemical modification of ePTFE surfaces, impregnation of biodegradable PLGA polymer into its wall pores, and coatings of both PLGA polymer on the ePTFE lumen surface and collagens on the PLGA-coated lumen surface. The hybrid scaffold was in advance in vitro tissue-cultured with vascular smooth muscle for 12 weeks and stem cells for another 2 weeks on its collagen-coated lumen surface, thus obtaining an in vitro tissue-cultured scaffold. This in vitro tissue-cultured hybrid scaffold was implanted in a carotid artery of mongrel dog for 4 weeks. The morphologies of the hybrid grafts explanted from the artery were analyzed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), focusing on tissue regeneration in the modified pores of ePTFE wall. They demonstrated migration of smooth muscle cells into the PLGA-impregnated/surface-modified pores of ePTFE wall along biodegradation of impregnated PLGA polymer, leading to tissue regeneration in its surface-modified pores. TEM results of the patent hybrid grafts showed both cell organelles and extracellular matrix of the regenerated media tissues in the pore channels of ePTFE wall with 20-30 mu m inter-nodal distances.
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Son, Kuk Hui photo

Son, Kuk Hui
College of Medicine (Department of Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE