Detailed Information

Cited 38 time in webofscience Cited 41 time in scopus
Metadata Downloads

Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells

Authors
Tran T.Q.N.Park B.J.Yun W.H.Duong T.N.Yoon H.H.
Issue Date
Jan-2020
Publisher
Nature Research
Citation
Scientific Reports, v.10, no.1
Journal Title
Scientific Reports
Volume
10
Number
1
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/17814
DOI
10.1038/s41598-019-57139-7
ISSN
2045-2322
Abstract
Highly porous self-assembled nanostructured Ni@C and NiO@C were synthesized via calcination of a Ni-based metal–organic framework. The morphology, structure, and composition of as synthesized Ni@C and NiO@C were characterized by SEM, FIB-SEM, TEM, and XRD. The electro-catalytic activity of the Ni@C and NiO@C catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the Ni@C had a higher residual carbon content and a higher specific surface area than NiO@C, thus exhibiting an enhanced electrochemical performance for urea oxidation. A direct urea fuel cell with Ni@C as an anode catalyst featured an excellent maximum power density of 13.8 mW cm−2 with 0.33 M urea solution in 1 M KOH as fuel and humidified air as oxidant at 50 °C, additionally showing excellent stability during continuous 20-h operation. Thus, this work showed that the highly porous carbon-supported Ni catalysts derived from Ni-based metal–organic framework can be used for urea oxidation and as an efficient anode material for urea fuel cells. © 2020, The Author(s).
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화공생명공학과 > 1. Journal Articles
IT융합대학 > 전자공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Bang Ju photo

Park, Bang Ju
반도체대학 (반도체·전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE