Detailed Information

Cited 14 time in webofscience Cited 16 time in scopus
Metadata Downloads

Development and Evaluation of a Reconstitutable Dry Suspension to Improve the Dissolution and Oral Absorption of Poorly Water-Soluble Celecoxib

Authors
Kim, Hye-InPark, Sang YeobPark, Seok JuLee, JewonCho, Kwan HyungJee, Jun-PilKim, Hee-CheolMaeng, Han-JooJang, Dong-Jin
Issue Date
Sep-2018
Publisher
MDPI
Keywords
reconstitutable; nanosuspension; bead milling; crystallinity; dissolution; pharmacokinetics
Citation
PHARMACEUTICS, v.10, no.3
Journal Title
PHARMACEUTICS
Volume
10
Number
3
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/3399
DOI
10.3390/pharmaceutics10030140
ISSN
1999-4923
Abstract
This study aims at developing and evaluating reconstitutable dry suspension (RDS) improved for dissolution rate, oral absorption, and convenience of use of poorly water-soluble celecoxib (CXB). Micro-sized CXB particle was used to manufacture nanosuspension by using bead milling and then RDS was made by spray-drying the nanosuspension with effective resuspension agent, dextrin. The redispersibility, morphology, particle size, crystallinity, stability, dissolution, and pharmacokinetic profile of the RDS were evaluated. RDS was effectively reconstituted into nanoparticles in 775.8 +/- 11.6 nm. It was confirmed that CXB particles are reduced into needle-shape ones in size after the bead-milling process, and the description of CXB was the same in the reconstituted suspension. Through the CXB crystallinity study using differential scanning calorimetry (DSC) and XRD analysis, it was identified that CXB has the CXB active pharmaceutical ingredient (API)'s original crystallinity after the bead milling and spray-drying process. In vitro dissolution of RDS was higher than that of CXB powder (93% versus 28% dissolution at 30 min). Furthermore, RDS formulation resulted in 5.7 and 6.3-fold higher area under the curve (AUC) and peak concentration (C-max) of CXB compared to after oral administration of CXB powder in rats. Collectively, our results suggest that the RDS may be a potential oral dosage formulation for CXB to improve its bioavailability and patient compliance.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Maeng, Han Joo photo

Maeng, Han Joo
Pharmacy (Dept.of Pharmacy)
Read more

Altmetrics

Total Views & Downloads

BROWSE