Detailed Information

Cited 68 time in webofscience Cited 71 time in scopus
Metadata Downloads

Scaling Effect on Silicon Nitride Memristor with Highly Doped Si Substrate

Authors
Kim, SungjunJung, SunghunKim, Min-HwiChen, Ying-ChenChang, Yao-FengRyoo, Kyung-ChangCho, SeongjaeLee, Jong-HoPark, Byung-Gook
Issue Date
9-May-2018
Publisher
WILEY-V C H VERLAG GMBH
Keywords
low-power; memristors; nonlinearity; scaling; silicon nitride
Citation
SMALL, v.14, no.19
Journal Title
SMALL
Volume
14
Number
19
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/3752
DOI
10.1002/smll.201704062
ISSN
1613-6810
Abstract
A feasible approach is reported to reduce the switching current and increase the nonlinearity in a complementary metal-oxide-semiconductor (CMOS)-compatible Ti/SiNx/p(+)-Si memristor by simply reducing the cell size down to sub-100 nm. Even though the switching voltages gradually increase with decreasing device size, the reset current is reduced because of the reduced current overshoot effect. The scaled devices (sub-100 nm) exhibit gradual reset switching driven by the electric field, whereas that of the large devices (>= 1 mu m) is driven by Joule heating. For the scaled cell (60 nm), the current levels are tunable by adjusting the reset stop voltage for multilevel cells. It is revealed that the nonlinearity in the low-resistance state is attributed to Fowler-Nordheim tunneling dominating in the high-voltage regime (>= 1 V) for the scaled cells. The experimental findings demonstrate that the scaled metal-nitride-silicon memristor device paves the way to realize CMOS-compatible high-density crosspoint array applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 전자공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Seong Jae photo

Cho, Seong Jae
IT (Major of Electronic Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE