Detailed Information

Cited 17 time in webofscience Cited 17 time in scopus
Metadata Downloads

Facile synthesis of nanoporous Fe2O3 with internal nanocavities for highly reversible lithium storage

Authors
Thuy-An NguyenHalim, MartinLee, Joong KeeLee, Sang-Wha
Issue Date
Nov-2017
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Nanoporous; Iron oxide; Internal nanocavities; Lithium-ion batteries; Chemical etching
Citation
ACTA MATERIALIA, v.140, pp.290 - 299
Journal Title
ACTA MATERIALIA
Volume
140
Start Page
290
End Page
299
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/5516
DOI
10.1016/j.actamat.2017.08.054
ISSN
1359-6454
Abstract
Citrate-capped magnetites (cit-Fe3O4) are electrostatically conjugated with 3-aminopropyl trimethox-ysilane (APS), forming APS-complexed Fe3O4 (A-Fe3O4). Atmospheric calcination induces the direct conversion of A-Fe3O4 into silica-coated Fe2O3 (Fe2O3@SiC2) while preserving its nanoscale dimension (similar to 15 nm). One-pot chemical etching of the Fe2O3@SiC2 leads to iron oxide particles (Fe2O3) with internal nanocavities, so called nanoporous Fe2O3. After 200 cycles at the current density of 100 mA g(-1), the nanoporous Fe2O3 delivers a high reversible capacity of similar to 700 mAh g(-1) without distinct capacity fading. The excellent cycling stability of the nanoporous Fe2O3 is attributed to the superior buffering effect contributed by its nanoscale dimension and multiple internal nanocavities inside particles, which significantly retard the pulverization process of iron oxide particles. The facile one-pot synthesis of the nanoporous Fe2O3 is an effective, inexpensive route in designing high-performance electrode materials for sustainable energy conversion and storage applications. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화공생명공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Wha photo

Lee, Sang Wha
Engineering (화공생명배터리공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE