Detailed Information

Cited 26 time in webofscience Cited 29 time in scopus
Metadata Downloads

Piezo2 Expression in Mechanosensitive Dental Primary Afferent Neurons

Authors
Won, J.Vang, H.Lee, P. R.Kim, Y. H.Kim, H. W.Kang, Y.Oh, S. B.
Issue Date
Jul-2017
Publisher
SAGE PUBLICATIONS INC
Keywords
neuroscience/neurobiology; sensory neurons; pulp biology; mechanotransduction; molecular biology; electrophysiology
Citation
JOURNAL OF DENTAL RESEARCH, v.96, no.8, pp.931 - 937
Journal Title
JOURNAL OF DENTAL RESEARCH
Volume
96
Number
8
Start Page
931
End Page
937
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/5956
DOI
10.1177/0022034517702342
ISSN
0022-0345
Abstract
Mechanosensitive ion channels have been suggested to be expressed in dental primary afferent (DPA) neurons to transduce the movement of dentinal fluid since the proposal of hydrodynamic theory. Piezo2, a mechanosensitive, rapidly inactivating (RI) ion channel, has been recently identified in dorsal root ganglion (DRG) neurons to mediate tactile transduction. Here, we examined the expression of Piezo2 in DPA neurons by in situ hybridization, single-cell reverse transcriptase polymerase chain reaction, and whole-cell patch-clamp recordings. DPA neurons with Piezo2 messenger RNA (mRNA) or Piezo2-like currents were further characterized based on their neurochemical and electrophysiological properties. Piezo2 mRNA was found mostly in medium- to large-sized DPA neurons, with the majority of these neurons also positive for Nav1.8, CGRP, and NF200, whereas only a minor population was positive for IB4 and peripherin. Whole-cell patch-clamp recordings revealed Piezo2-like, RI currents evoked by mechanical stimulation in a subpopulation of DPA neurons. RI currents were pharmacologically blocked by ruthenium red, a compound known to block Piezo2, and were also reduced by small interfering RNA-mediated Piezo2 knockdown. Piezo2-like currents were observed almost exclusively in IB4-negative DPA neurons, with the current amplitude larger in capsaicin-insensitive DPA neurons than the capsaicin-sensitive population. Our findings show that subpopulation of DPA neurons is indeed mechanically sensitive. Within this subpopulation of mechanosensitive DPA neurons, we have identified the Piezo2 ion channel as a potential transducer for mechanical stimuli, contributing to RI inward currents. Piezo2-positive DPA neurons were characterized as medium- to large-sized neurons with myelinated A-fibers, containing nociceptive peptidergic neurotransmitters.
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의예과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yong Ho photo

Kim, Yong Ho
College of Medicine (Premedical Course)
Read more

Altmetrics

Total Views & Downloads

BROWSE