Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Interface characteristics of neat melts and binary mixtures of polyethylenes from atomistic molecular dynamics simulations

Authors
Lee S.Frank C.W.Yoon D.Y.
Issue Date
May-2020
Publisher
MDPI AG
Keywords
Atomistic simulation; Polymer mixtures; Polymer surfaces; Polymer thin films; Surface segregation; Surface tension
Citation
Polymers, v.12, no.5
Journal Title
Polymers
Volume
12
Number
5
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/61769
DOI
10.3390/POLYM12051059
ISSN
2073-4360
Abstract
Molecular dynamics simulations of free-standing thin films of neat melts of polyethylene (PE) chains up to C150H302 and their binary mixtures with n-C13H28 are performed employing a united atom model. We estimate the surface tension values of PE melts from the atomic virial tensor over a range of temperatures, which are in good agreement with experimental results. Compared with short n-alkane systems, there is an enhanced surface segregation of methyl chain ends in longer PE chains. Moreover, the methyl groups become more segregated in the surface region with decreasing temperature, leading to the conclusion that the surface-segregation of methyl chain ends mainly arises from the enthalpic origin attributed to the lower cohesive energy density of terminal methyl groups. In the mixtures of two different chain lengths, the shorter chains are more likely to be found in the surface region, and this molecular segregation in moderately asymmetric mixtures in the chain length (C13H28 + C44H90) is dominated by the enthalpic effect of methyl chain ends. Such molecular segregation is further enhanced and dominated by the entropic effect of conformational constraints in the surface for the highly asymmetric mixtures containing long polymer chains (C13H28 + C150H3020). The estimated surface tension values of the mixtures are consistent with the observed molecular segregation characteristics. Despite this molecular segregation, the normalized density of methyl chain ends of the longer chain is more strongly enhanced, as compared with the all-segment density of the longer chain itself, in the surface region of melt mixtures. In addition, the molecular segregation results in higher order parameter of the shorter-chain segments at the surface and deeper persistence of surface-induced segmental order into the film for the longer chains, as compared with those in neat melt films. © 2020 by the authors.
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 나노화학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Hun photo

Lee, Sang Hun
BioNano Technology (Department of Chemistry)
Read more

Altmetrics

Total Views & Downloads

BROWSE