Detailed Information

Cited 36 time in webofscience Cited 37 time in scopus
Metadata Downloads

Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium

Authors
Jang, Sung-ChanKang, Sung-MinHaldorai, YuvarajGiribabu, KrishnanLee, Go-WoonLee, Young-ChulHyun, Moon SeopHan, Young-KyuRoh, ChanghyunHuh, Yun Suk
Issue Date
5-Dec-2016
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.6
Journal Title
SCIENTIFIC REPORTS
Volume
6
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/7566
DOI
10.1038/srep38384
ISSN
2045-2322
Abstract
A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents.
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 바이오나노학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Young Chul photo

Lee, Young Chul
BioNano Technology (Department of BioNano Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE