Detailed Information

Cited 17 time in webofscience Cited 18 time in scopus
Metadata Downloads

Fast charging sodium-ion batteries based on Te-P-C composites and insights to low-frequency limits of four common equivalent impedance circuits

Authors
Vo T.N.Kim D.S.Mun Y.S.Lee H.J.Ahn S.-K.Kim I.T.
Issue Date
Oct-2020
Publisher
Elsevier B.V.
Keywords
Constraint; Impedance; Low-frequency limit; Red phosphorus; Sodium-ion batteries; Tellurium
Citation
Chemical Engineering Journal, v.398
Journal Title
Chemical Engineering Journal
Volume
398
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/78144
DOI
10.1016/j.cej.2020.125703
ISSN
1385-8947
Abstract
Various tellurium-red phosphorus-carbon (Te-P-C) composites with different Te to P ratios were prepared via high-energy mechanical milling for application as anode materials in sodium-ion batteries. Highly conductive Te was added to increase the electrical conductivity and improve the mechanical strength of the P-C composite. The optimized Te-P-C (1:2) composite exhibited a reversible capacity of 593 mAh g−1, demonstrating a capacity retention of 82% at the 100th cycle in the fast recharge test (3 A g−1). This performance is related to the electrochemical impedance of each composite. Te-P-C composites are sufficiently simple, such that new constraints for the composites, provided by electrochemical impedance spectroscopy (EIS) results, can be examined. Four mathematical constraints for four frequently applied equivalent circuits at low-frequency limits were declared for batteries. The linear dependence of the sum of the real and imaginary parts of the impedance (Zreal + Zimag) on the frequency was used to interpret the systems. The newly proposed restrictions significantly reduced the uncertainty of the charge-transfer resistance (Rct) for the Te-P-C composites; the corrected nominal value (158 Ω to 188 Ω) of Rct was more reliable than the uncorrected one (125 Ω to 560 kΩ from commercial fitting software). Therefore, it is believed that the four proposed constraints could provide a simple and convenient way (linear regression) for electrochemical engineers to control the reliability of the interpretation of EIS data in battery systems. © 2020 Elsevier B.V.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화공생명공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Hyun Jong photo

Lee, Hyun Jong
Engineering (화공생명배터리공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE