Detailed Information

Cited 2 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimal diameter reduction ratio of acinar airways in human lungs

Authors
Park, KeunhwanJung, YeonsuSon, TaehoCho, Young-JaeJeon, Noo LiKim, WonjungKim, Ho-Young
Issue Date
Jan-2019
Publisher
PUBLIC LIBRARY SCIENCE
Citation
PLOS ONE, v.14, no.1
Journal Title
PLOS ONE
Volume
14
Number
1
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/78600
DOI
10.1371/journal.pone.0204191
ISSN
1932-6203
Abstract
In the airway network of a human lung, the airway diameter gradually decreases through multiple branching. The diameter reduction ratio of the conducting airways that transport gases without gas exchange is 0.79, but this reduction ratio changes to 0.94 in acinar airways beyond transitional bronchioles. While the reduction in the conducting airways was previously rationalized on the basis of Murray's law, our understanding of the design principle behind the acinar airways has been far from clear. Here we elucidate that the change in gas transfer mode is responsible for the transition in the diameter reduction ratio. The oxygen transfer rate per unit surface area is maximized at the observed geometry of acinar airways, which suggests the minimum cost for the construction and maintenance of the acinar airways. The results revitalize and extend the framework of Murray's law over an entire human lung.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 기계공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Keunhwan photo

Park, Keunhwan
Engineering (기계·스마트·산업공학부(기계공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE