Detailed Information

Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

Evaluation of Water Content in an Active Layer Using Penetration-Type Time Domain Reflectometry

Authors
Lee, Jong-SubHong, Won-TaekPark, KeunboHong, Seung SeoLee, Sang-HoByun, Yong-Hoon
Issue Date
Jun-2018
Publisher
MDPI
Keywords
active layer; electrical resistivity; time domain reflectometry (TDR); water content
Citation
APPLIED SCIENCES-BASEL, v.8, no.6
Journal Title
APPLIED SCIENCES-BASEL
Volume
8
Number
6
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/78638
DOI
10.3390/app8060935
ISSN
2076-3417
Abstract
The moisture condition of the active layer in Arctic regions can induce severe problems, such as ground subsidence and frost heave. Thus, the water content in the active layer needs to be estimated using a light and portable in-situ testing device. In this study, a penetration-type time domain reflectometry (PTDR) device is developed for the estimation of volumetric water content in the active layer. The developed PTDR is applied at a site for an electrical resistivity survey to characterize the water distribution along a measurement line. A PTDR consists of a PTDR module, connecting rods, and a guide with a hammer. The PTDR module can determine the dielectric constant of a material from the measurement of the travel time of electromagnetic waves. Using remolded soil samples, the dielectric constants measured from the PTDR are calibrated with the volumetric water content. The PTDR calibration demonstrates that the dielectric constant increases with the water content. For the temperature of 0.1 to 15.2 degrees C, the travel time only slightly depends on the temperature variance. For field application, a PTDR is pressed into the ground and measures the electromagnetic waves and temperature with depth. The results of the field tests show that the volumetric water content measured by the PTDR increases with depth due to the impermeable layer located underneath the active layer. The electrical resistivity survey conducted at the same site provides the electrical resistivity profile for a long distance and shallow depth soils. Furthermore, the electrical resistivity survey and PTDR establish a significant correlation between electrical resistivity and water content. The PTDR developed in this study can be effectively used as an advanced in-situ testing method to estimate the water distribution in the active layer.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 토목환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hong, Won Taek photo

Hong, Won Taek
Engineering (Department of Civil & Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE