Detailed Information

Cited 18 time in webofscience Cited 0 time in scopus
Metadata Downloads

Top-Split-Gate Ambipolar Organic Thin-Film Transistors

Full metadata record
DC Field Value Language
dc.contributor.authorYoo, Hocheon-
dc.contributor.authorLee, Seon Baek-
dc.contributor.authorLee, Dong-Kyu-
dc.contributor.authorSmits, Edsger C. P.-
dc.contributor.authorGelinck, Gerwin H.-
dc.contributor.authorCho, Kilwon-
dc.contributor.authorKim, Jae-Joon-
dc.date.available2020-10-20T06:45:40Z-
dc.date.created2020-06-10-
dc.date.issued2018-05-
dc.identifier.issn2199-160X-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/78641-
dc.description.abstractSplit-gate ambipolar organic transistor technology is gaining interests as a practical solution for the implementation of complementary transistors. It is known that conventional ambipolar transistors suffer from poor DC gain, noise margin, and high power consumption, as they do not have a well-defined off-state region. A split-gate device structure enables ambipolar transistors operating in a controlled unipolar mode (both p-type and n-type), resulting in superior inverter characteristics. A key challenge in previously reported split-gate ambipolar organic thin-film transistors is the strong current-voltage instabilities due to charge trapping at the dielectric interface. Here, the first split-gate ambipolar organic transistors with top-gate/bottom-contact structure are demonstrated. Compared to the previous split-gate devices, the top-split-gate ambipolar organic transistor exhibits superior electrical properties. The proposed device shows hysteresis-free I-V characteristics as well as higher bias stress stability. Furthermore, the complementary inverter circuit using the proposed transistors is also demonstrated, which results in a higher output swing and DC gain compared to the baseline ambipolar inverter.-
dc.language영어-
dc.language.isoen-
dc.publisherWILEY-
dc.relation.isPartOfADVANCED ELECTRONIC MATERIALS-
dc.titleTop-Split-Gate Ambipolar Organic Thin-Film Transistors-
dc.typeArticle-
dc.type.rimsART-
dc.description.journalClass1-
dc.identifier.wosid000431958800003-
dc.identifier.doi10.1002/aelm.201700536-
dc.identifier.bibliographicCitationADVANCED ELECTRONIC MATERIALS, v.4, no.5-
dc.description.isOpenAccessN-
dc.citation.titleADVANCED ELECTRONIC MATERIALS-
dc.citation.volume4-
dc.citation.number5-
dc.contributor.affiliatedAuthorYoo, Hocheon-
dc.type.docTypeArticle-
dc.subject.keywordAuthorambipolar organic transistors-
dc.subject.keywordAuthorambipolar semiconductors-
dc.subject.keywordAuthorcomplementary electronics-
dc.subject.keywordAuthormultigate devices-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusACTIVE-MATRIX DISPLAYS-
dc.subject.keywordPlusLOW-VOLTAGE-
dc.subject.keywordPlusCOMPLEMENTARY INVERTERS-
dc.subject.keywordPlusGAS SENSORS-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusSEMICONDUCTORS-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 전자공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Ho Cheon photo

Yoo, Ho Cheon
반도체대학 (반도체·전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE