Detailed Information

Cited 3 time in webofscience Cited 2 time in scopus
Metadata Downloads

Noninvasive bi-graphical analysis for the quantification of slowly reversible radioligand binding

Authors
Seo, SeonghoKim, Su JinYoo, Hye BinLee, Jee-YoungKim, Yu KyeongLee, Dong SooZhou, YunLee, Jae Sung
Issue Date
21-Sep-2016
Publisher
IOP PUBLISHING LTD
Keywords
[F-18]FP-CIT; distribution volume ratio; graphical analysis; parametric image; positron emission tomography
Citation
PHYSICS IN MEDICINE AND BIOLOGY, v.61, no.18, pp.6770 - 6790
Journal Title
PHYSICS IN MEDICINE AND BIOLOGY
Volume
61
Number
18
Start Page
6770
End Page
6790
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/7883
DOI
10.1088/0031-9155/61/18/6770
ISSN
0031-9155
Abstract
In this paper, we presented a novel reference-region-based (noninvasive) bi-graphical analysis for the quantification of a reversible radiotracer binding that may be too slow to reach relative equilibrium (RE) state during positron emission tomography (PET) scans. The proposed method indirectly implements the noninvasive Logan plot, through arithmetic combination of the parameters of two other noninvasive methods and the apparent tissue-to-plasma efflux rate constant for the reference region (k(2)'). We investigated its validity and statistical properties, by performing a simulation study with various noise levels and k(2)' values, and also evaluated its feasibility for [F-18] FP-CIT PET in human brain. The results revealed that the proposed approach provides distribution volume ratio estimation comparable to the Logan plot at low noise levels while improving underestimation caused by non-RE state differently depending on k(2)'. Furthermore, the proposed method was able to avoid noise-induced bias of the Logan plot, and the variability of its results was less dependent on k(2)' than the Logan plot. Therefore, this approach, without issues related to arterial blood sampling given a pre-estimate of k(2)' (e.g. population-based), could be useful in parametric image generation for slow kinetic tracers staying in a non-RE state within a PET scan.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE