Detailed Information

Cited 10 time in webofscience Cited 10 time in scopus
Metadata Downloads

Differential effects of 1α,25-dihydroxyvitamin D3 on the expressions and functions of hepatic CYP and UGT enzymes and its pharmacokinetic consequences in vivo

Authors
Doan, T.N.K.Vo, D.-K.Kim, H.Balla, A.Lee, Y.Yoon, I.-S.Maeng, H.-J.
Issue Date
Nov-2020
Publisher
MDPI AG
Keywords
1,25(OH)2D3; CYP; Drug-drug interactions; Metabolic kinetics; Pharmacokinetics; UGT; Vitamin D receptor
Citation
Pharmaceutics, v.12, no.11, pp.1 - 17
Journal Title
Pharmaceutics
Volume
12
Number
11
Start Page
1
End Page
17
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/79270
DOI
10.3390/pharmaceutics12111129
ISSN
1999-4923
Abstract
The compound 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is the active form of vitamin D3 and a representative ligand of the vitamin D receptor (VDR). Previous studies have described the impacts of 1,25(OH)2D3 on a small number of cytochrome P450 (CYP) and uridine diphosphate-glucuronyltransferase (UGT) enzymes, but comparatively little is known about interactions between several important CYP and UGT isoforms and 1,25(OH)2D3 in vitro and/or in vivo. Thus, we investigated the effects of 1,25(OH)2D3 on the gene and protein expressions and functional activities of selected CYPs and UGTs and their impacts on drug pharmacokinetics in rats. The mRNA/protein expressions of Cyp2b1 and Cyp2c11 were downregulated in rat liver by 1,25(OH)2D3 . Consistently, the in vitro metabolic kinetics (Vmax and CLint) of BUP (bupropion; a Cyp2b1 substrate) and TOL (tolbutamide; a Cyp2c11 substrate) were significantly changed by 1,25(OH)2D3 treatment in liver microsomes, but the kinetics of acetaminophen (an Ugt1a6/1a7/1a8 substrate) remained unaffected, consistent with Western blotting data for Ugt1a6. In rat pharmacokinetic studies, the total body clearance (CL) and nonrenal clearance (CLNR) of BUP were significantly reduced by 1,25(OH)2D3, but unexpectedly, the total area under the plasma concentration versus time curve from time zero to infinity (AUC) of hydroxybupropion (HBUP) was increased probably due to a marked reduction in the renal clearance (CLR) of HBUP. Additionally, the AUC, CL, and CLNR for TOL and the AUC for 4-hydroxytolbutamide (HTOL) were unaffected by 1,25(OH)2D3 in vivo. Discrepancies between observed in vitro metabolic activity and in vivo pharmacokinetics of TOL were possibly due to a greater apparent distribution volume at the steady-state (Vss) and lower plasma protein binding in 1,25(OH)2D3-treated rats. Our results suggest possible drug-drug and drug-nutrient interactions and provide additional information concerning safe drug combinations and dosing regimens for patients taking VDR ligand drugs including 1,25(OH)2D3 . © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Maeng, Han Joo photo

Maeng, Han Joo
Pharmacy (Dept.of Pharmacy)
Read more

Altmetrics

Total Views & Downloads

BROWSE