Detailed Information

Cited 26 time in webofscience Cited 33 time in scopus
Metadata Downloads

Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach

Authors
Al-masni, M.A.Kim, Woo-RamKim, Eung YeopNoh, YoungKim, Dong-Hyun
Issue Date
Oct-2020
Publisher
ELSEVIER SCI LTD
Keywords
Cerebral microbleeds; CNNs; Computer-aided detection; Deep learning; Susceptibility-weighted imaging; YOLO
Citation
NEUROIMAGE-CLINICAL, v.28
Journal Title
NEUROIMAGE-CLINICAL
Volume
28
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/79855
DOI
10.1016/j.nicl.2020.102464
ISSN
2213-1582
Abstract
Cerebral Microbleeds (CMBs) are small chronic brain hemorrhages, which have been considered as diagnostic indicators for different cerebrovascular diseases including stroke, dysfunction, dementia, and cognitive impairment. However, automated detection and identification of CMBs in Magnetic Resonance (MR) images is a very challenging task due to their wide distribution throughout the brain, small sizes, and the high degree of visual similarity between CMBs and CMB mimics such as calcifications, irons, and veins. In this paper, we propose a fully automated two-stage integrated deep learning approach for efficient CMBs detection, which combines a regional-based You Only Look Once (YOLO) stage for potential CMBs candidate detection and three-dimensional convolutional neural networks (3D-CNN) stage for false positives reduction. Both stages are conducted using the 3D contextual information of microbleeds from the MR susceptibility-weighted imaging (SWI) and phase images. However, we average the adjacent slices of SWI and complement the phase images independently and utilize them as a two-channel input for the regional-based YOLO method. This enables YOLO to learn more reliable and representative hierarchal features and hence achieve better detection performance. The proposed work was independently trained and evaluated using high and low in-plane resolution data, which contained 72 subjects with 188 CMBs and 107 subjects with 572 CMBs, respectively. The results in the first stage show that the proposed regional-based YOLO efficiently detected the CMBs with an overall sensitivity of 93.62% and 78.85% and an average number of false positives per subject (FPavg) of 52.18 and 155.50 throughout the five-folds cross-validation for both the high and low in-plane resolution data, respectively. These findings outperformed results by previously utilized techniques such as 3D fast radial symmetry transform, producing fewer FPavg and lower computational cost. The 3D-CNN based second stage further improved the detection performance by reducing the FPavg to 1.42 and 1.89 for the high and low in-plane resolution data, respectively. The outcomes of this work might provide useful guidelines towards applying deep learning algorithms for automatic CMBs detection. © 2020
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Noh, Young photo

Noh, Young
College of Medicine (Department of Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE