Detailed Information

Cited 13 time in webofscience Cited 16 time in scopus
Metadata Downloads

Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction

Authors
Gopi, S.Al-Mohaimeed, A.M.Al-onazi, W.A.Soliman, Elshikh M.Yun, Kyusik
Issue Date
May-2021
Publisher
ELSEVIER
Keywords
Bimetallic MOF; Electro-catalysis; Linear sweep voltammetry; Onset potential; Overpotential
Citation
Journal of King Saud University - Science, v.33, no.3
Journal Title
Journal of King Saud University - Science
Volume
33
Number
3
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/80993
DOI
10.1016/j.jksus.2021.101379
ISSN
1018-3647
Abstract
Discovering of advanced electrocatalyst for water splitting is importance of the improvement of metal air batteries, water electrolyzers. The approach have been developed to fabricate a novel electrocatalyst with more active sites, high surface area and high porous structure for improve the electrocatalytic activity. Metal organic frameworks have been emerging catalyst of higher crystalline, large surface area, has delivering greater potential for efficient OER electrocatalytic activity. Bimetallic metal organic framework (MOFs) is an excellent catalyst for energy storage and energy conversion system. In this work, we report the synthesis of bimetallic MOF by single step solvothermal method using Ni, Cu as metal sources and BDC as a linker. FE-SEM images indicated NiCu-MOF a narrow crystal formation. The electrocatalyst study of the synthesized catalyst was systematically investigated by linear sweep voltammetery, electrochemical impedance spectroscopy and Chronoamprometry under OER condition. The result demonstrated that NiCu-MOF exhibited better catalytic activity towards OER at onset potential and overpotential of 1.48 V and 250 mV with lower tafel slope of 169 mV/dec, indicating that 25% lower energy required for OER. Hence the proposed NiCu-MOF catalyst is an efficient catalyst for sustainable oxygen evolution reaction. © 2021 The Author(s)
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 바이오나노학과 > 1. Journal Articles
산업·환경대학원 > 산업환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yun, Kyu Sik photo

Yun, Kyu Sik
BioNano Technology (Department of BioNano Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE