Detailed Information

Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

Deep Learning-Based Computer-Aided Detection System for Automated Treatment Response Assessment of Brain Metastases on 3D MRI

Authors
Cho, JungheumKim, Young JaeSunwoo, LeonardLee, Gi PyoNguyen, T.Q.Cho, Se JinBaik, Sung HyunBae, Yun JungChoi, Byung SeJung, CheolkyuSohn, Chul-HoHan, Jung-HoKim, Chae-YongKim, Kwang GiKim, Jae Hyoung
Issue Date
Oct-2021
Publisher
Frontiers Media S.A.
Keywords
brain metastasis; computer-aided detection; deep learning; machine learning; Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM)
Citation
Frontiers in Oncology, v.11
Journal Title
Frontiers in Oncology
Volume
11
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/82735
DOI
10.3389/fonc.2021.739639
ISSN
2234-943X
Abstract
Background: Although accurate treatment response assessment for brain metastases (BMs) is crucial, it is highly labor intensive. This retrospective study aimed to develop a computer-aided detection (CAD) system for automated BM detection and treatment response evaluation using deep learning. Methods: We included 214 consecutive MRI examinations of 147 patients with BM obtained between January 2015 and August 2016. These were divided into the training (174 MR images from 127 patients) and test datasets according to temporal separation (temporal test set #1; 40 MR images from 20 patients). For external validation, 24 patients with BM and 11 patients without BM from other institutions were included (geographic test set). In addition, we included 12 MRIs from BM patients obtained between August 2017 and March 2020 (temporal test set #2). Detection sensitivity, dice similarity coefficient (DSC) for segmentation, and agreements in one-dimensional and volumetric Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria between CAD and radiologists were assessed. Results: In the temporal test set #1, the sensitivity was 75.1% (95% confidence interval [CI]: 69.6%, 79.9%), mean DSC was 0.69 ± 0.22, and false-positive (FP) rate per scan was 0.8 for BM ≥ 5 mm. Agreements in the RANO-BM criteria were moderate (κ, 0.52) and substantial (κ, 0.68) for one-dimensional and volumetric, respectively. In the geographic test set, sensitivity was 87.7% (95% CI: 77.2%, 94.5%), mean DSC was 0.68 ± 0.20, and FP rate per scan was 1.9 for BM ≥ 5 mm. In the temporal test set #2, sensitivity was 94.7% (95% CI: 74.0%, 99.9%), mean DSC was 0.82 ± 0.20, and FP per scan was 0.5 (6/12) for BM ≥ 5 mm. Conclusions: Our CAD showed potential for automated treatment response assessment of BM ≥ 5 mm. © Copyright © 2021 Cho, Kim, Sunwoo, Lee, Nguyen, Cho, Baik, Bae, Choi, Jung, Sohn, Han, Kim, Kim and Kim.
Files in This Item
There are no files associated with this item.
Appears in
Collections
보건과학대학 > 의용생체공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kwang Gi photo

Kim, Kwang Gi
College of IT Convergence (의공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE