Detailed Information

Cited 11 time in webofscience Cited 14 time in scopus
Metadata Downloads

Lysophosphatidic Acid Mediates Imiquimod-Induced Psoriasis-like Symptoms by Promoting Keratinocyte Proliferation through LPAR1/ROCK2/PI3K/AKT Signaling Pathway

Authors
Kim, DongheeKim, Hyo-JinBaek, Jin-OkRoh, Joo-YoungJun, Hee-Sook
Issue Date
Oct-2021
Publisher
MDPI
Keywords
Keratinocyte; Ki16425; Lysophosphatidic acid (LPA); Proliferation; Psoriasis
Citation
International Journal of Molecular Sciences, v.22, no.19
Journal Title
International Journal of Molecular Sciences
Volume
22
Number
19
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/82912
DOI
10.3390/ijms221910777
ISSN
1661-6596
Abstract
Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)‐induced psoriasis‐like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ‐induced psoriasis‐like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA‐induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin‐dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA‐induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho‐associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA‐induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ‐induced psoriasis‐like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학과 > 1. Journal Articles
의과대학 > 의학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Baek, Jin Ok photo

Baek, Jin Ok
College of Medicine (Department of Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE