Detailed Information

Cited 2 time in webofscience Cited 3 time in scopus
Metadata Downloads

A Comparative Study on the Thermal Conductivity of Concrete with Coal Bottom Ash under Different Drying Conditions

Authors
Yang, In-HwanPark, JihunKim, Kyoung-ChulYoo, Sung-Won
Issue Date
2-Dec-2021
Publisher
HINDAWI LTD
Citation
Advances in Civil Engineering, v.2021
Journal Title
Advances in Civil Engineering
Volume
2021
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/83032
DOI
10.1155/2021/7449298
ISSN
1687-8086
Abstract
The utilization of coal bottom ash (CBA) and fly ash in concrete has become more common. For CBA concrete, curing conditions would influence the thermal properties of the concrete due to the high water absorption capacity of the CBA aggregate. In addition, CBA and fly ash contents in concrete affect the thermal properties of the concrete. Therefore, the effects of the drying conditions and the CBA and fly ash contents on the thermal conductivity of CBA concrete were investigated in this study. The thermal conductivity of concrete was measured under two different curing and drying conditions: oven-dried conditions and saturated surface-dry (SSD) conditions, with curing times of 28 and 91 days. The concrete mixtures also contained different levels of CBA and fly ash. Crushed sand in the concrete mixtures was replaced by CBA with replacement ratios of 25%, 50%, 75%, and 100% by volume. In addition, cement in the concrete mixture was substituted by fly ash with replacement ratios of 20 and 40% by volume. The thermal conductivity of concrete under the oven-dried conditions was much lower than that under the SSD conditions. Moreover, the thermal conductivity of the concrete decreased as the CBA content increased under both the oven-dried and SSD conditions. The material properties of the concrete, including unit weight, compressive strength, and ultrasonic velocity, were also measured in the study. Compared with the SSD conditions, the compressive strength, unit weight, and ultrasonic velocity of CBA concrete were considerably lower under the oven-dried conditions. Moreover, the relationships between the thermal conductivity and unit weight, compressive strength, and ultrasonic velocity were suggested.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 토목환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Sung Won photo

Yoo, Sung Won
Engineering (Department of Civil & Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE