Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

Essential Amino Acid-Enriched Diet Alleviates Dexamethasone-Induced Loss of Muscle Mass and Function through Stimulation of Myofibrillar Protein Synthesis and Improves Glucose Metabolism in Mice

Authors
Kim, YeongminPark, SangheeLee, JinseokJang, JiwoongJung, JiyeonKoh, Jin-HoChoi, Cheol SooWolfe, Robert RKim, Il-Young
Issue Date
Jan-2022
Publisher
MDPI
Keywords
Dexamethasone; Essential amino acids; Glucose metabolic flux; Muscle atrophy; Protein turnover
Citation
Metabolites, v.12, no.1
Journal Title
Metabolites
Volume
12
Number
1
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/83363
DOI
10.3390/metabo12010084
ISSN
2218-1989
Abstract
Dexamethasone (DEX) induces dysregulation of protein turnover, leading to muscle atrophy and impairment of glucose metabolism. Positive protein balance, i.e., rate of protein synthesis exceeding rate of protein degradation, can be induced by dietary essential amino acids (EAAs). In this study, we investigated the roles of an EAA-enriched diet in the regulation of muscle proteostasis and its impact on glucose metabolism in the DEX-induced muscle atrophy model. Mice were fed normal chow or EAA-enriched chow and were given daily injections of DEX over 10 days. We determined muscle mass and functions using treadmill running and ladder climbing exercises, protein kinetics using the D2O labeling method, molecular signaling using immunoblot analysis, and glucose metabolism using a U-13C6 glucose tracer during oral glucose tolerance test (OGTT). The EAA-enriched diet increased muscle mass, strength, and myofibrillar protein synthesis rate, concurrent with improved glucose metabolism (i.e., reduced plasma insulin concentrations and increased insulin sensitivity) during the OGTT. The U-13C6 glucose tracing revealed that the EAA-enriched diet increased glucose uptake and subsequent glycolytic flux. In sum, our results demonstrate a vital role for the EAA-enriched diet in alleviating the DEX-induced muscle atrophy through stimulation of myofibrillar proteins synthesis, which was associated with improved glucose metabolism.
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의예과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Sanghee photo

Park, Sanghee
Art & Physical Education (운동재활학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE