Detailed Information

Cited 36 time in webofscience Cited 0 time in scopus
Metadata Downloads

Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease

Authors
Yu, Jeong SeokYoun, Gi SooChoi, JieunKim, Chang-HoKim, Byung YongYang, Seung-JoLee, Je HeePark, Tae-SikKim, Byoung KookKim, Yeon BeeRoh, Seong WoonMin, Byeong HyunPark, Hee JinYoon, Sang JunLee, Na YoungChoi, Ye RinKim, Hyeong SeobGupta, HaripriyaSung, HotaikHan, Sang HakSuk, Ki TaeLee, Do Yup
Issue Date
Dec-2021
Publisher
JOHN WILEY & SONS LTD
Keywords
gut-liver axis; indole; metabolites; microbiome; non-alcoholic fatty liver disease
Citation
CLINICAL AND TRANSLATIONAL MEDICINE, v.11, no.12
Journal Title
CLINICAL AND TRANSLATIONAL MEDICINE
Volume
11
Number
12
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/83767
DOI
10.1002/ctm2.634
ISSN
2001-1326
Abstract
Background Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. Methods We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 10(9) CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. Results L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. Conclusions NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.
Files in This Item
There are no files associated with this item.
Appears in
Collections
바이오나노대학 > 생명과학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Tae Sik photo

Park, Tae Sik
BioNano Technology (Department of Life Sciences)
Read more

Altmetrics

Total Views & Downloads

BROWSE