Detailed Information

Cited 1 time in webofscience Cited 2 time in scopus
Metadata Downloads

Unbalanced fronto-pallidal neurocircuit underlying set shifting in obsessive- compulsive disorder

Authors
Kim, TaekwanKim, MinahJung, Wi HoonBin Kwak, YooMoon, Sun-YoungLho, Silvia KyungjinLee, JunheeKwon, Jun Soo
Issue Date
Apr-2022
Publisher
OXFORD UNIV PRESS
Keywords
cognitive flexibility; obsessive-compulsive disorder; cortico-basal ganglia-thalamo-cortical circuitry; brain connectome; hierarchical clustering
Citation
BRAIN, v.145, no.3, pp.979 - 990
Journal Title
BRAIN
Volume
145
Number
3
Start Page
979
End Page
990
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/84415
DOI
10.1093/brain/awab483
ISSN
0006-8950
Abstract
Maladaptive habitual behaviours of obsessive-compulsive disorder are characterized by cognitive inflexibility, which hypothetically arises from dysfunctions of a certain cortico-basal ganglia-thalamo-cortical circuit including the ventrolateral prefrontal region. Inside this neurocircuit, an imbalance between distinct striatal projections to basal ganglia output nuclei, either directly or indirectly via the external globus pallidus, is suggested to be relevant for impaired arbitration between facilitation and inhibition of cortically initiated activity. However, current evidence of individually altered cortico-striatal or thalamo-cortical connectivities is insufficient to understand how cortical dysconnections are linked to the imbalanced basal ganglia system in patients. In this study, we aimed to identify aberrant ventrolateral prefronto-basal ganglia-thalamic subnetworks representing direct-indirect imbalance and its association with cognitive inflexibility in patients. To increase network detection sensitivity, we constructed a cortico-basal ganglia-thalamo-cortical network model incorporating striatal, pallidal and thalamic subregions defined by unsupervised clustering in 105 medication-free patients with obsessive-compulsive disorder (age = 25.05 +/- 6.55 years, male/female = 70/35) and 99 healthy controls (age = 23.93 +/- 5.80 years, male/female = 64/35). By using the network-based statistic method, we analysed group differences in subnetworks formed by suprathreshold dysconnectivities. Using linear regression models, we tested subnetwork dysconnectivity effects on symptom severity and set-shifting performance assessed by well-validated clinical and cognitive tests. Compared with the healthy controls, patients were slower to track the Part B sequence of the Trail Making Test when the effects of psychomotor and visuospatial functions were adjusted (t= 3.89, P <0.001) and made more extradimensional shift errors (t= 4.09, P < 0.001). In addition to reduced fronto-striatal and striato-external pallidal connectivities and hypoconnected striato-thalamic subnetwork [P = 0.001, family-wise error rate (FWER) corrected], patients had hyperconnected fronto-external pallidal (P = 0.012, FWER corrected) and infra-thalamic (P = 0.015, FWER corrected) subnetworks compared with the healthy controls. Among the patients, the fronto-pallidal subnetwork alteration, especially ventrolateral prefronto-external globus pallidal hyperconnectivity, was associated with relatively fewer extradimensional shifting errors beta = -0.30, P = 0.001). Our findings suggest that the hyperconnected fronto-external pallidal subnetwork may have an opposite effect to the imbalance caused by the reduced indirect pathway (fronto-striato-external pallidal) connectivities in patients. This ventrolateral prefrontal hyperconnectivity may help the external globus pallidus disinhibit basal ganglia output nuclei, which results in behavioural inhibition, so as to compensate for the impaired set shifting. We suggest the ventrolateral prefrontal and external globus pallidus as neuromodulatory targets for inflexible habitual behaviours in obsessive-compulsive disorder.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Wi Hoon photo

Jung, Wi Hoon
Social Sciences (Department of Psychology)
Read more

Altmetrics

Total Views & Downloads

BROWSE