Detailed Information

Cited 35 time in webofscience Cited 37 time in scopus
Metadata Downloads

A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete

Authors
Ham, SuyunSong, HominOelze, Michael L.Popovics, John S.
Issue Date
Mar-2017
Publisher
Elsevier BV
Keywords
Air-coupled; Backscatter; Incoherent; In situ characterization; MEMs; Microcracking; Non-Destructive Evaluation (NDE)
Citation
Ultrasonics, v.75, pp.46 - 57
Journal Title
Ultrasonics
Volume
75
Start Page
46
End Page
57
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/85383
DOI
10.1016/j.ultras.2016.11.003
ISSN
0041-624X
Abstract
We describe an approach that utilizes ultrasonic surface wave backscatter measurements to characterize the volume content of relatively small distributed defects (microcrack networks) in concrete. A simplified weak scattering model is used to demonstrate that the scattered wave field projected in the direction of the surface wave propagation is relatively insensitive to scatterers that are smaller than the, propagating wavelength, while the scattered field projected in the opposite direction is more sensitive to sub wavelength scatterers. Distributed microcracks in the concrete serve as the small scatterers that interact with a propagating surface wave. Data from a finite element simulation were used to demonstrate the viability of the proposed approach, and also to optimize a testing configuration to collect data. Simulations were validated through experimental measurements of ultrasonic backscattered surface waves from test samples of concrete constructed with different concentrations of fiber filler (0.0, 0.3 and 0.6%) to mimic increasing microcrack volume density and then samples with actual cracking induced by controlled thermal cycles. A surface wave was induced in the concrete samples by a 50 kHz ultrasonic source operating 10 mm above the surface at an angle of incidence of 9 degrees Silicon-based miniature MEMS acoustic sensors located a few millimeters above the concrete surface both behind and in front of the sender were used to detect leaky ultrasonic surface waves emanating froni concrete. A normalized backscattered energy parameter was calculated from the signals. Statistically significant differences in the normalized backscattered energy were observed between concrete samples with varying levels of simulated and actual cracking damage volume. (C) 2016 Elsevier B.V. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 토목환경공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Homin photo

Song, Homin
Engineering (Department of Civil & Environmental Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE