Detailed Information

Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

Plasma Metabolomics and Machine Learning-Driven Novel Diagnostic Signature for Non-Alcoholic Steatohepatitisopen access

Authors
Ji, MoongiJo, YunjuChoi, Seung JoonKim, Seong MinKim, Kyoung KonOh, Byung-ChulRyu, DongryeolPaik, Man-JeongLee, Dae Ho
Issue Date
Jul-2022
Publisher
MDPI
Keywords
nonalcoholic steatohepatitis; nonalcoholic fatty liver disease; metabolomics; machine learning; biomarkers
Citation
BIOMEDICINES, v.10, no.7
Journal Title
BIOMEDICINES
Volume
10
Number
7
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/85535
DOI
10.3390/biomedicines10071669
ISSN
2227-9059
Abstract
We performed targeted metabolomics with machine learning (ML)-based interpretation to identify metabolites that distinguish the progression of nonalcoholic fatty liver disease (NAFLD) in a cohort. Plasma metabolomics analysis was conducted in healthy control subjects (n = 25) and patients with NAFL (n = 42) and nonalcoholic steatohepatitis (NASH, n = 19) by gas chromatography-tandem mass spectrometry (MS/MS) and liquid chromatography-MS/MS as well as RNA sequencing (RNA-seq) analyses on liver tissues from patients with varying stages of NAFLD (n = 12). The resulting metabolomic data were subjected to routine statistical and ML-based analyses and multi-omics interpretation with RNA-seq data. We found 6 metabolites that were significantly altered in NAFLD among 79 detected metabolites. Random-forest and multinomial logistic regression analyses showed that eight metabolites (glutamic acid, cis-aconitic acid, aspartic acid, isocitric acid, alpha-ketoglutaric acid, oxaloacetic acid, myristoleic acid, and tyrosine) could distinguish the three groups. Then, the recursive partitioning and regression tree algorithm selected three metabolites (glutamic acid, isocitric acid, and aspartic acid) from these eight metabolites. With these three metabolites, we formulated an equation, the MetaNASH score that distinguished NASH with excellent performance. In addition, metabolic map construction and correlation assays integrating metabolomics data into the transcriptome datasets of the liver showed correlations between the concentration of plasma metabolites and the expression of enzymes governing metabolism and specific alterations of these correlations in NASH. Therefore, these findings will be useful for evaluation of altered metabolism in NASH and understanding of pathophysiologic implications from metabolite profiles in relation to NAFLD progression.
Files in This Item
There are no files associated with this item.
Appears in
Collections
의과대학 > 의학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seong Min photo

Kim, Seong Min
College of Medicine (Department of Medicine)
Read more

Altmetrics

Total Views & Downloads

BROWSE