Detailed Information

Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidicsopen access

Authors
De, AninditaKo, Young Tag
Issue Date
Dec-2022
Publisher
TAYLOR & FRANCIS LTD
Keywords
Thermocycling technology; cooling-heating cycle; siRNA; ionizable LNPs; LNPs stability
Citation
DRUG DELIVERY, v.29, no.1, pp.2644 - 2657
Journal Title
DRUG DELIVERY
Volume
29
Number
1
Start Page
2644
End Page
2657
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/85623
DOI
10.1080/10717544.2022.2108523
ISSN
1071-7544
Abstract
Ionizable LNPs are the latest trend in nucleic acid delivery. Microfluidics technology has recently gained interest owing to its rapid mixing, production of nucleic acid-ionizable LNPs, and stability of nucleic acid inside the body. Industrial scale-up, nucleic acid-lipid long-term storage instability, and high production costs prompted scientists to seek alternate solutions to replace microfluidic technology. We proposed a single-pot, organic solvent-free thermocycling technology to efficiently and economically overcome most of the limitations of microfluidic technology. New thermocycling technology needs optimization of process parameters such as sonication duration, cooling-heating cycle, number of thermal cycles, and lipid:aqueous phase ratio to formulate precisely sized particles, effective nucleic acid encapsulation, and better shelf-life stability. Our research led to the formulation of siRNA-ionizable LNPs with particle sizes of 104.2 +/- 34.7 nm and PDI 0.111 +/- 0.109, with 83.3 +/- 4.1% siRNA encapsulation. Thermocycling siRNA-ionizable LNPs had comparable morphological structures with commercialized microfluidics ionizable LNPs imaged by TEM and cryo-TEM. When compared to microfluidics ionizable LNPs, thermocycling siRNA-ionizable LNPs had a longer shelf life at 4 degrees C. Our thermocycling technology showed an effective alternative to microfluidics technology in the production of nucleic acid-ionizable LNPs to meet global demand.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Anindita, De photo

Anindita, De
Pharmacy (Dept.of Pharmacy)
Read more

Altmetrics

Total Views & Downloads

BROWSE