Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Cysteine-Encapsulated Liposome for Investigating Biomolecular Interactions at Lipid Membranesopen access

Authors
Trang Thi Thuy NguyenHaam, SeungjooPark, Joon-SeoLee, Sang-Wha
Issue Date
Sep-2022
Publisher
MDPI
Keywords
liposome; cysteine; gold nanoparticles; colorimetric detection; phospholipase A(2); Triton X-100
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, no.18
Journal Title
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume
23
Number
18
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/85883
DOI
10.3390/ijms231810566
ISSN
1661-6596
Abstract
The development of a strategy to investigate interfacial phenomena at lipid membranes is practically useful because most essential biomolecular interactions occur at cell membranes. In this study, a colorimetric method based on cysteine-encapsulated liposomes was examined using gold nanoparticles as a probe to provide a platform to report an enzymatic activity at lipid membranes. The cysteine-encapsulated liposomes were prepared with varying ratios of 1,2-dimyristoyl-sn-glycero3-phosphocholine (DMPC) and cholesterol through the hydration of lipid films and extrusions in the presence of cysteine. The size, composition, and stability of resulting liposomes were analyzed by scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR) spectroscopy, and UV-vis spectrophotometry. The results showed that the increased cholesterol content improved the stability of liposomes, and the liposomes were formulated with 60 mol % cholesterol for the subsequent experiments. Triton X-100 was tested to disrupt the lipid membranes to release the encapsulated cysteine from the liposomes. Cysteine can induce the aggregation of gold nanoparticles accompanying a color change, and the colorimetric response of gold nanoparticles to the released cysteine was investigated in various media. Except in buffer solutions at around pH 5, the cysteine-encapsulated liposomes showed the color change of gold nanoparticles only after being incubated with Triton X-100. Finally, the cysteine-encapsulated liposomal platform was tested to report the enzymatic activity of phospholipase A(2) that hydrolyzes phospholipids in the membrane. The hydrolysis of phospholipids triggered the release of cysteine from the liposomes, and the released cysteine was successfully detected by monitoring the distinct red-to-blue color change of gold nanoparticles. The presence of phospholipase A(2) was also confirmed by the appearance of a peak around 690 nm in the UV-vis spectra, which is caused by the cysteine-induced aggregation of gold nanoparticles. The results demonstrated that the cysteine-encapsulated liposome has the potential to be used to investigate biological interactions occurring at lipid membranes.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화공생명공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang Wha photo

Lee, Sang Wha
Engineering (화공생명배터리공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE