Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Signal-to-Noise Ratio Enhancement of Single-Voxel In Vivo P-31 and H-1 Magnetic Resonance Spectroscopy in Mice Brain Data Using Low-Rank Denoisingopen access

Authors
Jeon, Yeong-JaePark, Shin-EuiChang, Keun-ABaek, Hyeon-Man
Issue Date
Dec-2022
Publisher
MDPI
Keywords
single voxel; P-31 MRS; H-1 MRS; denoising; mouse brain; stroke
Citation
METABOLITES, v.12, no.12
Journal Title
METABOLITES
Volume
12
Number
12
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/86709
DOI
10.3390/metabo12121191
ISSN
2218-1989
Abstract
Magnetic resonance spectroscopy (MRS) is a noninvasive technique for measuring metabolite concentration. It can be used for preclinical small animal brain studies using rodents to provide information about neurodegenerative diseases and metabolic disorders. However, data acquisition from small volumes in a limited scan time is technically challenging due to its inherently low sensitivity. To mitigate this problem, this study investigated the feasibility of a low-rank denoising method in enhancing the quality of single voxel multinuclei (P-31 and H-1) MRS data at 9.4 T. Performance was evaluated using in vivo MRS data from a normal mouse brain (P-31 and H-1) and stroke mouse model (H-1) by comparison with signal-to-noise ratios (SNRs), Cramer-Rao lower bounds (CRLBs), and metabolite concentrations of a linear combination of model analysis results. In P-31 MRS data, low-rank denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared with the original data. In H-1 MRS data, the method also improved the SNRs, CRLBs, but it performed better for P-31 MRS data with relatively simpler patterns compared to the H-1 MRS data. Therefore, we suggest that the low-rank denoising method can improve spectra SNR and metabolite quantification uncertainty in single-voxel in vivo P-31 and H-1 MRS data, and it might be more effective for P-31 MRS data. The main contribution of this study is that we demonstrated the effectiveness of the low-rank denoising method on small-volume single-voxel MRS data. We anticipate that our results will be useful for the precise quantification of low-concentration metabolites, further reducing data acquisition voxel size, and scan time in preclinical MRS studies.
Files in This Item
There are no files associated with this item.
Appears in
Collections
보건과학대학 > 의용생체공학과 > 1. Journal Articles
의과대학 > 의예과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Baek, Hyeon Man photo

Baek, Hyeon Man
College of Medicine (Premedical Course)
Read more

Altmetrics

Total Views & Downloads

BROWSE