Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-throughput organo-on-pillar (high-TOP) array system for three-dimensional ex vivo drug testing

Authors
Jun, Hye RyeongKang, Hyun JuJu, Sung HunKim, Jung EunJeon, Sang YoulKu, BosungLee, Jae JunKim, MinsungKim, Min JeongChoi, Jung-JooNoh, Joseph J.Kim, Hyun-SooLee, Jeong-WonLee, Jin-KuLee, Dong Woo
Issue Date
May-2023
Publisher
ELSEVIER SCI LTD
Keywords
Patient-derived organoid; Automated organospotter; Organo-on-pillar; High-throughput screening; Precision medicine
Citation
BIOMATERIALS, v.296
Journal Title
BIOMATERIALS
Volume
296
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/87681
DOI
10.1016/j.biomaterials.2023.122087
ISSN
0142-9612
Abstract
The development of organoid culture technologies has triggered industrial interest in ex vivo drug test-guided clinical response prediction for precision cancer therapy. The three-dimensional culture encapsulated with basement membrane (BM) components is extremely important in establishing ex vivo organoids and drug sensitivity tests because the BM components confer essential structures resembling tumor histopathology. Although numerous studies have demonstrated three-dimensional culture-based drug screening methods, establishing a large-scale drug-screening platform with matrix-encapsulated tumor cells is challenging because the arrangement of microspots of a matrix-cell droplet onto each well of a microwell plate is inconsistent and difficult to standardize. In addition, relatively low scales and lack of reproducibility discourage the application of three-dimensional organoid-based drug screening data for precision treatment or drug discovery. To overcome these limitations, we manufactured an automated organospotter-integrated high-throughput organo-on-pillar (high-TOP) drug-screening platform. Our system is compatible with various extracellular matrices, including BM extract, Matrigel, collagen, and hydrogel. In addition, it can be readily utilized for high-content analyses by simply exchanging the bottom plates without disrupting the domes. Our system demonstrated considerable robustness, consistency, reproducibility, and biological relevancy in three-dimensional drug sensitivity analyses using Matrigel-encapsulated ovarian cancer cell lines. We also demonstrated proof-of-concept cases representing the clinical feasibility of high-TOP-assisted ex vivo drug tests linked to clinical chemo-response in ovarian cancer patients. In conclusion, our platform provides an automated and standardized method for ex vivo drug-sensitivity-guided clinical response prediction, suggesting effective chemotherapy regimens for patients with cancer.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Dong Woo photo

Lee, Dong Woo
College of IT Convergence (의공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE