Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Investigating Drought and Flood Evolution Based on Remote Sensing Data Products over the Punjab Region in Pakistanopen access

Authors
Ullah, RahatKhan, JahangirUllah, IrfanKhan, FaheemLee, Youngmoon
Issue Date
Mar-2023
Publisher
MDPI
Keywords
drought monitoring; drought validation; flood impact; GFMS; NDVI; LST; VTCI
Citation
REMOTE SENSING, v.15, no.6
Journal Title
REMOTE SENSING
Volume
15
Number
6
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/87748
DOI
10.3390/rs15061680
ISSN
2072-4292
Abstract
Over the last five decades, Pakistan experienced its worst drought from 1998 to 2002 and its worst flood in 2010. This study determined the record-breaking impacts of the droughts (1998-2002) and the flood (2010) and analyzed the given 12-year period, especially the follow-on period when the winter wheat crop was grown. We identified the drought, flood, and warm and cold edges over the plain of Punjab Pakistan based on a 12-year time series (2003-2014), using the vegetation temperature condition index (VTCI) approach based on Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data products. During the year 2010, the Global Flood Monitoring System (GFMS) model applied to the real-time Tropical Rainfall Measuring Mission (TRMM) rainfall incorporated data products into the TRMM Multi-Satellite Precipitation Analysis (TMPA) for the flood detection/intensity, stream flow, and daily accumulative precipitation, and presented the plain provisions to wetlands. This study exhibits drought severity, warm and cold edges, and flood levels using the VTCI drought-monitoring approach, which utilizes a combination of the normalized difference vegetation index (NDVI) with land surface temperature (LST) data products. It was found that during the years 2003-2014, the VTCI had a positive correlation coefficient (r) with the cumulative precipitation (r = 0.60) on the day of the year (D-073) in the winter. In the year 2010, at D-201, there was no proportionality (nonlinear), and at D-217, a negative correlation was established. This revealed the time, duration, and intensity of the flood at D-201 and D-217, and described the heavy rainfall, stream flow, and flood events. At D-233 and D-281 during 2010, a significant positive correlation was noticed in normal conditions (r = 0.95 in D-233 and r= 0.97 in D-281 during the fall of 2010), which showed the flood events and normality. Notably, our results suggest that VTCI can be used for drought and wet conditions in both rain-fed and irrigated regions. The results are consistent with anomalies in the GFMS model using the spatial and temporal observations of the MODIS, TRMM, and TMPA satellites, which describe the dry and wet conditions, as well as flood runoff stream flow and flood detection/intensity, in the region of Punjab during 2010. It should be noted that the flood (2010) affected the area, and the production of the winter wheat crop has consistently declined from 19.041 to 17.7389 million tons.
Files in This Item
There are no files associated with this item.
Appears in
Collections
IT융합대학 > 컴퓨터공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Khan, Faheem photo

Khan, Faheem
College of IT Convergence (컴퓨터공학부(컴퓨터공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE