Detailed Information

Cited 2 time in webofscience Cited 5 time in scopus
Metadata Downloads

Ni-Ion-Chelating Strategy for Mitigating the Deterioration of Li-Ion Batteries with Nickel-Rich Cathodesopen access

Authors
Park, Seon YeongPark, SewonLim, Hyeong YongYoon, MoonsuChoi, Jeong-HeeKwak, Sang KyuHong, Sung YouChoi, Nam-Soon
Issue Date
Feb-2023
Publisher
WILEY
Keywords
chelating agents; electrolyte additives; lithium-ion batteries; nickel-rich cathodes; transition metal dissolution
Citation
ADVANCED SCIENCE, v.10, no.5
Journal Title
ADVANCED SCIENCE
Volume
10
Number
5
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/89375
DOI
10.1002/advs.202205918
ISSN
2198-3844
Abstract
Ni-rich cathodes are the most promising candidates for realizing high-energy-density Li-ion batteries. However, the high-valence Ni4+ ions formed in highly delithiated states are prone to reduction to lower valence states, such as Ni3+ and Ni2+, which may cause lattice oxygen loss, cation mixing, and Ni ion dissolution. Further, LiPF6, a key salt in commercialized electrolytes, undergoes hydrolysis to produce acidic compounds, which accelerate Ni-ion dissolution and the interfacial deterioration of the Ni-rich cathode. Dissolved Ni ions migrate and deposit on the surface of the graphite anode, causing continuous electrolyte decomposition and threatening battery safety by forming Li dendrites on the anode. Herein, 1,2-bis(diphenylphosphino)ethane (DPPE) chelates Ni ions dissolved from the Ni-rich cathode using bidentate phosphine moieties and alleviates LiPF6 hydrolysis via complexation with PF5. Further, DPPE reduces the generation of corrosive HF and HPO2F2 substantially compared to the amounts observed using trimethyl phosphite and tris(trimethylsilyl) phosphite, which are HF-scavenging additives. Li-ion cells with Ni-rich cathodes and graphite anodes containing DPPE exhibit remarkable discharge capacity retentions of 83.4%, with high Coulombic efficiencies of >99.99% after 300 cycles at 45 degrees C. The results of this study will promote the development of electrolyte additives.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE