Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Automatic Control System for Precise Intravenous Therapy Using Computer Vision Based on Deep Learningopen access

Authors
Seol, JaehwangLee, SangyunPark, JeongyunKim, Kwang Gi
Issue Date
Oct-2023
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Intravenous therapy; infusion flow rate; feedback control; computer vision-based on deep learning; Internet of Things; vision monitoring
Citation
IEEE ACCESS, v.11, pp 121870 - 121881
Pages
12
Journal Title
IEEE ACCESS
Volume
11
Start Page
121870
End Page
121881
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/89550
DOI
10.1109/ACCESS.2023.3328568
ISSN
2169-3536
Abstract
Intravenous (IV) therapy provides a rapid therapeutic effect. However, errors in infusion rate can lead to over-dosing and under-dosing, potentially causing severe side effects for patients. To prevent incidents, medical staff visually monitors medication injection information (MIF) such as current flow rates (CFR) and injection volume. In this study, we propose an internet of things (IoT) system that automatically controls the CFR and remotely monitors the MIF. First, a peristaltic pump is designed to infuse parenteral fluids based on the "drop-by-drop" phenomenon. Second, a computer vision-based on deep learning algorithm provides real-time video and counts the fluid dropping to derive the MIF. Finally, the CFR is automatically applied as a feedback signal to regulate the infusion cycle of the peristaltic pump. After embedding all systems in our prototype, we evaluate the system performance according to IV therapy protocols used in clinical practice. In our experiments, the mean accuracy of the fluid injection using the peristaltic pump was 99.23% and the dropping count was the highest at 98.25%. Furthermore, the average accuracy of the CFR using the feedback system was 99.3%. Based on our results, we confirmed that automated control of infusion rate is possible in IV therapy and computer vision-based on deep learning can be utilized for feedback sensors and monitoring system. Therefore, we believe that our method is the practical solution that can increase patient safety and work efficiency of clinical staffs.
Files in This Item
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Sang-Yoon photo

Lee, Sang-Yoon
College of Medicine (Premedical Course)
Read more

Altmetrics

Total Views & Downloads

BROWSE