Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Heterogeneous Material Integration via Autogenous Transfer Printing Using a Graphene Oxide Release Layer

Authors
Jang, Il RyuYea, JunwooPark, Kyeong JunKim, UhyeonJang, Kyung-InKim, NamjungKim, SeokKim, Hoe JoonKeum, Hohyun
Issue Date
Dec-2023
Publisher
AMER CHEMICAL SOC
Keywords
transfer printing; grapheneoxide; reduction; autogenous shrinkage; microcrack
Citation
ACS APPLIED NANO MATERIALS, v.7, no.1, pp 1019 - 1029
Pages
11
Journal Title
ACS APPLIED NANO MATERIALS
Volume
7
Number
1
Start Page
1019
End Page
1029
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/90316
DOI
10.1021/acsanm.3c05028
ISSN
2574-0970
2574-0970
Abstract
The transfer printing method has drawn significant attention as a promising solution to overcome the limitation of substrate dependency in conventional microfabrication. However, several issues, such as pattern distortion, incompatibility of high-temperature processes, and low throughput, still pose challenges in achieving next-generation microfabrication. The present study utilizes graphene oxide (GO), with a thickness in the tens of nanometers, as the release layer to achieve stable, efficient, and highly scalable transfer printing. When an GO layer is exposed to the reducing agent, it undergoes the removal of existing functional groups, resulting in dimensional shrinkage and inducing microcrack formation. These microcracks serve as stress-concentration initiators between GO and the substrate, facilitating efficient exfoliation of the prepared layers above. The exceptional thermal stability of GO releasing layer allows the proposed method to be applied in transferring the high-temperature processed poly silicon and silicon dioxide patterns. Furthermore, the rapid processing time, confirmed through both experimental and numerical analysis, demonstrates a significant improvement in throughput compared to that of conventional transfer printing methods. Additionally, the proposed method involves a minimal aqueous process, effectively addressing pattern distortion issues in chemical sacrificial layer-releasing methods. The successful fabrication of a wearable resistance temperature detector embedded phototherapy device demonstrates the potential of the proposed method for advancing microfabrication techniques.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, NAMJUNG photo

KIM, NAMJUNG
Engineering (기계·스마트·산업공학부(기계공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE