Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

cuFE: High Performance Privacy Preserving Support Vector Machine With Inner-Product Functional Encryptionopen access

Authors
Han, Kyung HyunLee, Wai-KongKarmakar, AngshumanMera, Jose Maria BermudoHwang, Seong Oun
Issue Date
Jan-2024
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Keywords
Graphics processing units; Encryption; Cryptography; Iron; Machine learning; Transforms; Public key; inner-product functional encryption; privacy-preserving; ring-learning with errors; support vector machines
Citation
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, v.12, no.1, pp 328 - 343
Pages
16
Journal Title
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING
Volume
12
Number
1
Start Page
328
End Page
343
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/91087
DOI
10.1109/TETC.2023.3261360
ISSN
2168-6750
Abstract
Privacy preservation is a sensitive issue in our modern society. It is becoming increasingly important in many applications in this ever-growing and highly connected digital era. Functional encryption is a computation on encrypted data paradigm that allows users to retrieve the evaluation of a function on encrypted data without revealing the data, thus effectively protecting users' privacy. However, existing functional encryption implementations are still very time-consuming for practical deployment, especially when applied to machine learning applications that involve a huge amount of data. In this paper, we present a high-performance implementation of inner-product functional encryption (IPFE) based on ring-learning with errors on graphics processing units. We propose novel techniques to parallelize the Gaussian sampling, which is one of the most time-consuming operations in the IPFE scheme. We further execute a systematic investigation to select the best strategy for implementing number theoretic transform and inverse number theoretic transform for different security levels. Compared to the existing AVX2 implementation of IPFE, our implementation on a RTX 2060 GPU device can achieve 34.24x, 40.02x, 156.30x, and 18.76x speed-up for Setup, Encrypt, KeyGen, and Decrypt respectively. Finally, we propose a fast privacy-preserving Support Vector Machine (SVM) application to classify data securely using our GPU-accelerated IPFE scheme. Experimental results show that our implementation can classify 100 inputs with 591 support vectors in 688 ms (less than a second), which is 33.12x faster than the AVX2.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Seong Oun photo

Hwang, Seong Oun
College of IT Convergence (컴퓨터공학부(컴퓨터공학전공))
Read more

Altmetrics

Total Views & Downloads

BROWSE