Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimizing long-term stability of siRNA using thermoassemble ionizable reverse pluronic-Bcl2 micelleplexes

Authors
De, AninditaKang, Ji HeeSaurajLee, O. HyunKo, Young Tag
Issue Date
Apr-2024
Publisher
ELSEVIER
Keywords
Thermosassemble; Ionizable reverse pluronic; Bcl2 siRNA; Long-term stability; Blood brain barrier crossing
Citation
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, v.264
Journal Title
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume
264
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/91411
DOI
10.1016/j.ijbiomac.2024.130783
ISSN
0141-8130
1879-0003
Abstract
Thermosassemble Ionizable Reverse Pluronic (TIRP) platform stands out for its distinctive combination of thermoassemble and ionizable features, effectively overcoming challenges in previous siRNA delivery systems. This study opens up a formation for long-term stabilization, and high loading of siRNA, specifically crafted for targeting oncogenic pathways. TIRP-Bcl2 self-assembles into a unique micelle structure with a nanodiameter of 75.8 +/- 5.7 nm, efficiently encapsulating Bcl2 siRNA while maintaining exceptional colloidal stability at 4 degrees C for 8 months, along with controlled release profiles lasting 180 h. The dual ionizable headgroup enhance the siRNA loading and the revers pluronic unique structural orientation enhance the stability of the siRNA. The thermoassemble of TIRP-Bcl2 facilitates flexi-rigid response to mild hyperthermia, enhancing deep tissue penetration and siRNA release in the tumor microenvironment. This responsive behavior improves intracellular uptake and gene silencing efficacy in cancer cells. TIRP, with its smaller particle size and reverse pluronic nature, efficiently transports siRNA across the blood-brain barrier, holding promise for revolutionizing glioblastoma (GBM) treatment. TIRP-Bcl2 shows significant potential for precise, personalized therapies, promising prolonged siRNA delivery and in vitro/in vivo stability. This research opens avenues for further exploration and clinical translation of this innovative nanocarrier system across different cancers.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ko, Young Tag photo

Ko, Young Tag
Pharmacy (Dept.of Pharmacy)
Read more

Altmetrics

Total Views & Downloads

BROWSE