Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanoristors: highly uniform, sub-500-millivolt, large-scale, and robust molybdenum disulfide nanograined memristors

Full metadata record
DC Field Value Language
dc.contributor.authorWoo, Gunhoo-
dc.contributor.authorKim, Hyeong-U-
dc.contributor.authorJang, Byung Chul-
dc.contributor.authorNaqi, Muhammad-
dc.contributor.authorHong, Seongin-
dc.contributor.authorBala, Arindam-
dc.contributor.authorKang, Seunghun-
dc.contributor.authorKim, Yunseok-
dc.contributor.authorKim, Sunkook-
dc.contributor.authorKim, Taesung-
dc.contributor.authorKim, Jae-Joon-
dc.contributor.authorYoo, Hocheon-
dc.date.accessioned2024-06-08T04:30:21Z-
dc.date.available2024-06-08T04:30:21Z-
dc.date.issued2024-05-
dc.identifier.issn2050-7526-
dc.identifier.issn2050-7534-
dc.identifier.urihttps://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/91472-
dc.description.abstractMemristors are garnering attention as promising electronic synapse and nonvolatile memory devices owing to their high density and analog switching with low energy consumption. However, most conventional memristors suffer not only from device-to-device and cycle-to-cycle variations but also from a destructive conductive filament (CF)-forming process, which are issues that must be addressed to use memristors in practical applications. Here, we demonstrate a highly robust and reliable memristor array using molybdenum disulfide (MoS2) nanograins, named nanoristors. MoS2 films with 7-10 nm nanograins were synthesized using plasma-enhanced chemical vapor deposition. We confirmed that tens of thousands of grain boundaries exist in a 1 mu m x 1 mu m area, resulting in memory operation with exceptionally high uniformity and excellent endurance (>2300 cycles). Moreover, vertically formed grain boundaries and defects work as a guiding route for Ag+ ion diffusion, resulting in forming-free operation with a low switching voltage of less than 500 mV. Furthermore, the MoS2 nanoristor successfully emulated potentiation and depression characteristics which are essential for online learning in neuromorphic systems. The face recognition functionality of the MoS2 nanoristor-based synapse device is evaluated using the device-to-system simulation. As the proposed approach of fabricating nanograined MoS2 leads to highly uniform and robust operation of memristors, it is expected that nanoristors fabricated using layered nanomaterials will open up new opportunities for achieving electronic synapse and memory devices for application in neuromorphic electronic systems.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleNanoristors: highly uniform, sub-500-millivolt, large-scale, and robust molybdenum disulfide nanograined memristors-
dc.typeArticle-
dc.identifier.wosid001202601400001-
dc.identifier.doi10.1039/d3tc04265k-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY C, v.12, no.17, pp 6350 - 6358-
dc.description.isOpenAccessN-
dc.identifier.scopusid2-s2.0-85190730299-
dc.citation.endPage6358-
dc.citation.startPage6350-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY C-
dc.citation.volume12-
dc.citation.number17-
dc.type.docTypeArticle-
dc.publisher.location영국-
dc.subject.keywordPlusTRANSITION-METAL DICHALCOGENIDES-
dc.subject.keywordPlusMOS2-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusDAMAGE-
dc.subject.keywordPlusFILMS-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoo, Ho Cheon photo

Yoo, Ho Cheon
반도체대학 (반도체·전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE