Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A comprehensive review on graphene-based materials: From synthesis to contemporary sensor applications

Authors
Perala, Ramaswamy SandeepChandrasekar, NarendharBalaji, RamachandranAlexander, Pinky SteffiHumaidi, Nik Zulkarnine NikHwang, Michael Taeyoung
Issue Date
Jun-2024
Publisher
ELSEVIER SCIENCE SA
Keywords
Graphene; Raman spectroscopy; Electrochemical; FET; Analytes and biosensors
Citation
MATERIALS SCIENCE & ENGINEERING R-REPORTS, v.159
Journal Title
MATERIALS SCIENCE & ENGINEERING R-REPORTS
Volume
159
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/91691
DOI
10.1016/j.mser.2024.100805
ISSN
0927-796X
1879-212X
Abstract
Carbon based 2D materials, specifically those of the graphene family, recently gained considerable interest in the study of sensors. It is emerging as a novel and potent material with tunable physicochemical properties such as ballistic conduction, high mechanical strength, a broad spectrum of chemical stability, high surface -area -tovolume ratio, ease of surface functionalization, and the possibility of mass production. This review provides insights into recent advances in graphene-based materials for field-effect transistor-based sensors, electrochemical sensors, and Raman spectroscopy-based sensors. Among the sensing methodologies, those utilizing field-effect transistors demonstrate a high degree of specificity and ultralow sensitivity and are relatively easy to manufacture in large batches with a repeatable sensitivity. Over the last decade, multiple types of sensors based on various graphene-family materials have been researched to detect various types of targets, ranging from biomolecules to heavy metals and chemical pollutants. Owing to their ability to integrate into a portable and rapid test platform, both at the laboratory scale and for point-of-care testing, the graphene family of materials (GFM) is a significantly viable base for sensor fabrication. Electrochemical and Raman spectroscopy-based sensors can provide a robust platform for detection at high -stress environments including fluctuating pH, temperature, and other possible disturbing conditions. The strategies used by researchers to detect specific and ultralow concentrations of analytes in a diverse mixture of targets are elaborated in detail. This review chronologically presents details regarding the GFM ranging from their synthesis to specific application possibilities.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher HWANG, MICHAEL TAEYOUNG photo

HWANG, MICHAEL TAEYOUNG
BioNano Technology (Department of BioNano Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE