Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nobiletin regulates intracellular Ca2+ levels via IP3R and ameliorates neuroinflammation in Aβ42-induced astrocytes

Authors
SanjaySood, RachitJaiswal, VarunKang, Sung-UngPark, MieyLee, Hae-Jeung
Issue Date
Jul-2024
Publisher
ELSEVIER
Keywords
Alzheimer's disease; Calcium dysregulation; Citrus flavonoid; Neuroinflammation; Nobiletin
Citation
Redox Biology, v.73
Journal Title
Redox Biology
Volume
73
URI
https://scholarworks.bwise.kr/gachon/handle/2020.sw.gachon/92010
DOI
10.1016/j.redox.2024.103197
ISSN
2213-2317
Abstract
Astrocytes are the major glial cells in the human brain and provide crucial metabolic and trophic support to neurons. The amyloid-β peptide (Aβ) alter the morphological and functional properties of astrocytes and induce inflammation and calcium dysregulation, contributing to Alzheimer's disease (AD) pathology. Recent studies highlight the role of Toll-like receptor (TLR) 4/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in inflammation. Reactive oxygen species (ROS) generated due to Aβ, induce apoptosis in the brain cells worsening AD progression. Astrocytic cell surface receptors, such as purinergic receptors (P2Y1 and P2Y2), metabotropic glutamate receptor (mGLUR)5, α7 nicotinic acetylcholine receptor (α7nAChR), and N-methyl-D-aspartate receptors (NMDARs), have been suggested to interact with inositol trisphosphate receptor (IP3R) on the endoplasmic reticulum (ER) to induce Ca2+ movement from ER to cytoplasm, causing Ca2+ dysregulation. We found that the citrus flavonoid nobiletin (NOB) protected primary astrocytes from Aβ42-induced cytotoxicity and inhibited TLR4/NF-κB signaling in Aβ42-induced primary rat astrocytes. NOB was found to regulate Aβ42-induced ROS levels through Keap1-Nrf2 pathway. The receptors P2Y1, P2Y2, mGLUR5, α7nAChR, and NMDARs induced intracellular Ca2+ levels by activating IP3R and NOB regulated them, thereby regulating intracellular Ca2+ levels. Molecular docking analysis revealed a possible interaction between NOB and IP3R in IP3R regulation. Furthermore, RNA sequencing revealed various NOB-mediated biological signaling pathways, such as the AD-presenilin, AD-amyloid secretase, and Wnt signaling pathway, suggesting possible neuroprotective roles of NOB. To conclude, NOB is a promising therapeutic agent for AD and works by modulating AD pathology at various levels in Aβ42-induced primary rat astrocytes. © 2024 The Author(s)
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Hae Jeung photo

Lee, Hae Jeung
BioNano Technology (Department of Food & Nutrition)
Read more

Altmetrics

Total Views & Downloads

BROWSE