Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Accurate and Efficient Finite-Difference Time-Domain Simulation Compared With CCPR Model for Complex Dispersive Mediaopen access

Authors
Choi, HongjinKim, Yeon-HwaBaek, Jae-WooJung, Kyung-Young
Issue Date
Nov-2019
Publisher
Institute of Electrical and Electronics Engineers Inc.
Keywords
Mathematical model; Finite difference methods; Time-domain analysis; Dispersion; Computational modeling; Media; Numerical models; Dispersion model; dispersive media; finite-difference time-domain (FDTD) method; human tissue; plasmonics
Citation
IEEE Access, v.7, pp.160498 - 160505
Indexed
SCIE
SCOPUS
Journal Title
IEEE Access
Volume
7
Start Page
160498
End Page
160505
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/11702
DOI
10.1109/ACCESS.2019.2951173
Abstract
Recently, it has received a great deal of attention to analyze the electromagnetic wave problems in dispersive media by using the finite-difference time-domain (FDTD) method. Accordingly, it is of great importance to employ a proper dispersion model which can fit the frequency-dependent permittivity of a medium considered. The reported dispersion models include Debye, Drude, Lorentz, modified Lorentz, quadratic complex rational function, complex-conjugate pole-residue (CCPR) models. The CCPR dispersion model has advantage over other dispersion models in the fact that accurate CCPR dispersion parameters can be simply extracted by using the powerful and robust vector fitting tool which has been widely used in the circuit theory. However, the arithmetic operation of CCPR-based FDTD implementation is involved with complex-valued numbers and thus its numerical computation is not efficient. In this work, we propose an accurate and efficient FDTD simulation for complex dispersive media. In specific, an accurate CCPR dispersion model is simply obtained using the vector fitting tool and then the CCPR dispersion model is converted to the modified Lorentz dispersion model which leads to the arithmetic operation of only real-valued numbers in its FDTD implementation. Numerical examples are used to illustrate the accuracy and efficiency of our dispersive FDTD simulation.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 융합전자공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jung, Kyung Young photo

Jung, Kyung Young
COLLEGE OF ENGINEERING (SCHOOL OF ELECTRONIC ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE