Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Internal-Flow-Mediated, Tunable 1D Cassie-to-Wenzel Wetting Transition on Superhydrophobic Microcavity Surfaces during Evaporationopen access

Authors
Pendyala, PrashantKim, Hong NamGrewal, Harpreet S.Chae, UikyuYang, SungwookCho, Il-JooSong, SimonYoon, Eui-Sung
Issue Date
Oct-2019
Publisher
TAYLOR & FRANCIS INC
Keywords
1D wetting transition; Cassie state; Wenzel state; internal flow; evaporation
Citation
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, v.23, no.4, pp.275 - 288
Indexed
SCIE
SCOPUS
Journal Title
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING
Volume
23
Number
4
Start Page
275
End Page
288
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/12432
DOI
10.1080/15567265.2019.1660439
ISSN
1556-7265
Abstract
Superhydrophobic textured surfaces are known to maintain a nonwetted state unless external stimuli are applied since they can withstand high wetting pressure. Herein, we report a new category of tunable, one-dimensional (1D) Cassie-to-Wenzel wetting transitions during evaporation, even on superhydrophobic surfaces. The transition initiates at the periphery of the evaporating drop, and the wetting transition propagates toward the center of the drop. The transitions are observed for surfaces with wetting pressures as high as similar to 7,568 Pa, which is much higher than the Laplace pressure, i.e., similar to 200 Pa. In situ high-contrast fluorescence microscopy images of the evaporating drop show that the transition is induced by preferential depinning of the air-water interface and subsequent formation of air bubbles in the cavities near the three-phase contact line. The evaporation-induced internal flow enhances the pressure within the water droplet and subsequently causes a Cassie-to-Wenzel wetting transition.
Files in This Item
Appears in
Collections
서울 공과대학 > 서울 기계공학부 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Simon photo

Song, Simon
COLLEGE OF ENGINEERING (SCHOOL OF MECHANICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE