Detailed Information

Cited 7 time in webofscience Cited 6 time in scopus
Metadata Downloads

Band Gap Narrowing of zinc Orthogermanate by Dimensional and Defect Modification

Authors
Kim, Dong YeonYoon, TaeseungJang, Youn JeongLee, Jin HoNa, YounghoonLee, Byeong JunLee, Jae SungKim, Kwang S
Issue Date
Jun-2019
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, v.123, no.23, pp.14573 - 14581
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PHYSICAL CHEMISTRY C
Volume
123
Number
23
Start Page
14573
End Page
14581
URI
https://scholarworks.bwise.kr/hanyang/handle/2021.sw.hanyang/13418
DOI
10.1021/acs.jpcc.9b03728
ISSN
1932-7447
Abstract
Dimensional reduction and defect control are powerful techniques for enhancing the physical and chemical properties of raw materials. Herein, we report the new type of sheetlike or two-dimensional-like zinc orthogermanate (Zn2GeO4, denoted as S-ZGO) with a one-step hydrothermal reaction and its application to photocatalytic water splitting. S-ZGO is directly grown along the surface of the Zn foil, since the growth rate of a crystal facet can be modified through the restricted reaction of dissolved precursor (GeO2) with a solid precursor (Zn foil) during the hydrothermal reaction. For further modification, the oxygen vacancies are introduced on the surface of S-ZGO using thermal hydrogen treatment and photodeposition-driven low amount of Pt/RuO2 co-catalysts loading. Notably, this reduced dimension decreases the band gap to 4.09 eV for S-ZGO (from 4.5 eV for the bulk), and the hydrogenation of S-ZGO further decreases the band gap to 3.88 eV. The origin of band gap narrowing is demonstrated with the density functional theory showing increased density of states at the edge of the conduction band (CB) and valence band (VB), and a new defect level between the CB minimum and VB maximum. As a possible application, we demonstrate that S- ZGO/H-2 loaded with Pt/RuO2 exhibits the H-2 rate of 167.0 mu mol h(-1) and the O-2 rate of 83.0 mu mol h(-1) g(-1), similar to 8 times those of the rodlike ZGO photocatalysts.
Files in This Item
Go to Link
Appears in
Collections
서울 공과대학 > 서울 화학공학과 > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Jang, Youn Jeong photo

Jang, Youn Jeong
COLLEGE OF ENGINEERING (DEPARTMENT OF CHEMICAL ENGINEERING)
Read more

Altmetrics

Total Views & Downloads

BROWSE